
80/263/CDV
COMMITTEE DRAFT FOR VOTE (CDV)

PROJET DE COMITÉ POUR VOTE (CDV)
Project number 80/61162-420/Ed. 1
Numéro de projet

IEC/TC or SC: 80
CEI/CE ou SC:

Date of circulation
Date de diffusion
2000-04-07

Closing date for voting (Voting mandatory
for P-members)
Date de clôture du vote (Vote obligatoire
pour les membres (P))
2000-09-15

Titre du CE/SC: TC/SC Title:
Maritime navigation and radiocommunication
equipment and systems

Secretary: M. A. RAMBAUT - United Kingdom
Secrétaire:
Also of interest to the following committees
Intéresse également les comités suivants

Supersedes document
Remplace le document
80/175/CD & 80/176/CD

Horizontal functions concerned
Fonctions horizontales concernées

Safety
Sécurité

EMC
CEM

Environment
Environnement

Quality assurance
Assurance qualité

CE DOCUMENT EST TOUJOURS A L'ETUDE ET SUSCEPTIBLE DE MODIFICATION.
IL NE PEUT SERVIR DE REFERENCE.

LES RECIPIENDAIRES DU PRESENT DOCUMENT SONT INVITES A PRESENTER,
AVEC LEURS OBSERVATIONS, LA NOTIFICATION DES DROITS DE PROPRIETE
DONT ILS AURAIENT EVENTUELLEMENT CONNAISSANCE ET A FOURNIR UNE
DOCUMENTATION EXPLICATIVE.

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO CHANGE. IT
SHOULD NOT BE USED FOR REFERENCE PURPOSES.

RECIPIENTS OF THIS DOCUMENT ARE INVITED TO SUBMIT, WITH THEIR
COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

Titre : Title :

Maritime navigation and radiocommunication
equipment and systems - Digital interfaces -
Part 420: Companion standard requirements
and basic companion standards - Multiple talker
and multiple listeners - Ship systems
interconnection

Introductory note

IEC 61162-4 Series specifies a communication protocol for use in integrated systems. It defines a
ship wide and system level integration mechanism that complements communication solutions
provided by other parts of the IEC 61162 series. It is also expected that the IEC 61162-4 Series will
be used for data acquisition by higher level, non real-time and non-critical administrative
workstations and personal computers. IEC 61162-4 Series has been developed as a network that
can support a high number of nodes (several hundred if proper segmentation is used), with
response times between 0.1 second and 1 second dependent on load. Ethernet and Internet
protocols are employed at the transport level.

IEC 61162-4 has been divided into four different parts numbered IEC 61162-400, 401, 410 and 420.

ATTENTION
Parallel IEC CDV/CENELEC Enquiry)

ATTENTION
CDV soumis en parallèle au vote (CEI) et à

l’enquête (CENELEC)

FORM 7B (IEC)
1999-10-01

© International Electrotechnical Commission, IEC
Commission Électrotechnique Internationale, CEI

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 2 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MARITIME NAVIGATION AND RADIOCOMMUNICATION
EQUIPMENT AND SYSTEMS-

DIGITAL INTERFACES-

Part 420: Companion Standard Requirements
and Basic Companion Standards -

Multiple Talker and Multiple Listeners –Ship Systems Interconnection.

FOREWORD
1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

This CDV for the The International Standard IEC 61162-420 has been prepared by Technical
Committee 80: Maritime Navigation and Radiocommunication Equipment and Systems.

[This CDV is proposed to cancel and replace the first edition of the CD]

The text of this standard is based on the following documents:

FDIS Report on voting

XX/XX/FDIS XX/XX/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

The committee has decided that the contents of this publication will remain unchanged until
April 2003. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 3 –

INTRODUCTION

The International Standards IEC 61162-series have been prepared by Technical Committee 80:
Maritime Navigation and Radiocommunication Equipment and Systems.

IEC 61162 is a four part standard which specifies four digital interfaces for applications in
marine navigation, radio-communication and system integration.

The 4 parts are:

IEC 61162-1 Single Talker and Multiple Listeners

IEC 61162-2 Single Talker and Multiple Listeners - High Speed Transmission

IEC 61162-3 Multiple Talker and Multiple Listeners - Serial Data Instrument Network

IEC 61162-4 Multiple Talker and Multiple Listeners - Ship Systems Interconnection. This part
is sub-divided into a number of individual standards with part numbers in the 400 series.

This part of the standard contains the specification of a description language for IEC 61162-4
series companion standards (user layer specifications), a framework for the organisation of
such companion standard descriptions and also the descriptions of basic components that can
be used as a starting point to build IEC 61162-4 series components and networks.

Later standards in the companion standard series (IEC 61162-42x) are expected to address
more concrete interface requirements for specific navigational equipment.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 4 –

CONTENTS

Page

1 Scope .. 8
1.1 Contents of this document... 8
1.2 The Purpose of Companion Standards .. 8

2 Normative references ... 8
3 Definitions.. 9

3.1 Terms and abbreviations ... 9
3.2 General Typographical Rules in this Document...10

4 General Principles for the PCS ..10
4.1 General Structure ..10

4.1.1 Purpose ...10
4.1.2 Components of the PCSDL...10
4.1.3 Object based principles in the PCSDL ..11
4.1.4 Generic and manufacturer specific companion standards12
4.1.5 Generic Companion Standards (PFS) ...12
4.1.6 Manufacturer Specific Companion Standards..13
4.1.7 Guidelines for using PCS ...13

4.2 Products of the PCS...15
4.2.1 MAU name ...15
4.2.2 Interface name...15
4.2.3 Interface class name ..15
4.2.4 Data object name ...15
4.2.5 Data object function ...15
4.2.6 Data object structure ..16
4.2.7 Data object information contents ..16
4.2.8 Run-time library information items ..16
4.2.9 PFS information items ..16

4.3 The PISCES Foundation Specifications (PFS) ..16
4.4 Generic Interfaces in the PFS ..17

5 The Companion Standard Reference Specification ..17
5.1 Introduction..17
5.2 Basic Concepts of the PCS ..18
5.3 Conventions for companion standard specification files ..18

5.3.1 General principles ..19
5.3.2 Tokens...19
5.3.3 Name structure ..20
5.3.4 Name scope...21
5.3.5 Configurable identifiers and literal ..21

5.4 General Structure of PCS Specifications ..21
5.4.1 General..21
5.4.2 The specification header ..22
5.4.3 The specification body..23

5.5 Application specifications ...23
5.5.1 Overview..23
5.5.2 General Layout...23
5.5.3 Header...24

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 5 –

5.5.4 Body ..25
5.6 Interface component specifications ..27

5.6.1 Overview..27
5.6.2 General Layout...27
5.6.3 Header specification...28
5.6.4 Body Specification..28

5.7 Information Specifications ..30
5.7.1 Overview..30
5.7.2 General Layout...30
5.7.3 Header...30
5.7.4 Body ..31

5.8 Data Types ..31
5.8.1 Overview..31
5.8.2 General Layout...32
5.8.3 Header...32
5.8.4 Body ..32

6 PISCES Foundation Specification (PFS) ..35
6.1 Introduction..35
6.2 Naming conventions...35
6.3 Application classes ..35

6.3.1 Introduction ..35
6.3.2 Application base class: PACApplication ..35
6.3.3 LNA MAU Application: PACLNA..36
6.3.4 Managed applications: PACFullApplication ...36
6.3.5 NMEA Application: PACNMEARelay ...36
6.3.6 Console application: PACConsole ..36
6.3.7 General Alarm and Monitoring Application: PACServerApp36

7 Specification requirements for PCS compliant applications ..36
7.1 Introduction and general documentation format ..36
7.2 Function block ...37

7.2.1 Function block graphical view ...37
7.2.2 Physical effects ..37
7.2.3 Input variables ...37
7.2.4 Output variables ...37
7.2.5 Events ...37
7.2.6 Commands ..38
7.2.7 Status ..38
7.2.8 Parameters ..38
7.2.9 Indication of accept or connect functionality..38

7.3 Functional description ..38
7.4 Companion standard descriptions ..38

Annex A (Normative) Defined keywords ..39
Annex B (Normative) Basic PISCES Data Types ...41
Annex C (Normative) General applications companion standards ...42

C.1 Introduction and general principles ...42
C.2 Functionality overview ..42

C.2.1 General data definitions ...42
C.2.2 Version codes ..42
C.2.3 Manufacturer and model identification ..42

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 6 –

C.2.4 Interface and MCP information. ..42
C.2.5 Authentication ..42
C.2.6 File overview..42
C.2.7 Data types General ..44
C.2.8 Application PACSimpleApplication ..48
C.2.9 Application PACFullApplication...48
C.2.10 Interface PCCVersionCodes ...49
C.2.11 Interface PCCApplicationInfo..50
C.2.12 Data types UserAuth ..52
C.2.13 Interface PCCUserAuth ..54
C.2.14 Data types LnaMau ..56
C.2.15 Interface PCCLNAStats ..58

Annex D (Normative) General alarm and monitoring companion standards61
D.1 Introduction and general principles ...61
D.2 Definitions ...61
D.3 Functionality overview ..61

D.3.1 Companion standard for tag based monitoring and alarm system61
D.3.2 Client-server architecture ...62
D.3.3 Tag number ...62
D.3.4 Tag sets...62
D.3.5 Tag information ..62
D.3.6 Tag attributes...62
D.3.7 Tag data ..62
D.3.8 Alarms ...63

D.4 Application classes ..63
D.5 Companion standard structure ...64
D.6 File structure..64
D.7 Standard tag names ...65

D.7.1 General..65
D.7.2 Structure of P tag name class...65
D.7.3 General structural rules ..65
D.7.4 Main process codes ...66
D.7.5 Process sub-codes...67
D.7.6 General sub-groups..67
D.7.7 Automation related sub-group...68
D.7.8 Navigation sub-groups..68
D.7.9 Data type indication group ...68
D.7.10 Use of engineering units...69
D.7.11 Sequence number ..69

D.8 Structure of standard tags (S class) ...69
D.9 Structure of yard tags (Y class) ..69
D.10 Structure of internal tags (I class)...69
D.11 New tag name classes ...69
D.12 General quality indicators ...70
D.13 Certification ...70
D.14 Time stamp..70
D.15 Validity flag ..70
D.16 Authentication ..70
D.17 Companion standard specifications ..70

D.17.1 DATA TYPES TagData...70

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 7 –

D.17.2 Application PACReadableServer...76
D.17.3 Application PACWritableServer ..77
D.17.4 Application PACAlarmSystem ...77
D.17.5 Interface PCCTagDatabase..78
D.17.6 Interface PCCTagText..81
D.17.7 Interface PCCTagStream ...81
D.17.8 Interface PCCTagNetsearch...82
D.17.9 Interface PCCTagAttributes ..83
D.17.10 Interface PCCTagSubscribe..84
D.17.11 Interface PCCTagWrite...85
D.17.12 Interface PCCTagAlarm ..86
D.17.13 Interface PCCTagSet..87
D.17.14 Interface PCCTagAttributeWrite..89

Annex E (Normative) Navigational interfaces ..90
E.1 IEC 61162-1 relay function ...90
E.2 Interface PCCNMEAIn..90

E.2.1 READ NoOfPorts..90
E.2.2 FUNCTION GetPortDescription ..90
E.2.3 FUNCTION NoOfSentences ...90
E.2.4 FUNCTION GetListOfSentences...90
E.2.5 FUNCTION GetSentence ...90
E.2.6 SUBSCRIBE Port_<nn>..91
E.2.7 SUBSCRIBE Port_<nn>_<fmt> ...91

E.3 Interface PCCNMEAOut ...91
E.3.1 READ NoOfPorts..91
E.3.2 FUNCTION GetPortDescription ..91
E.3.3 NONACKED-WRITE Port_<nn>..91

E.4 The NMEA related companion standard documents ..92
E.4.1 The NMEA data type description...92
E.4.2 Description of Interface PCCNMEAIn..93
E.4.3 Description of Interface PCCNMEAOut ...96
E.4.4 Application Description ...97

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 8 –

1 Scope

1.1 Contents of this document

This document contains the specification of the requirement for and basic components of the
IEC 61162-4 series Companion Standards. In the following, these components are referred to
as follows:

a) PCS (PISCES Companion Standards) which contains the rules for creation of companion
standards. The general principles underlying the PCS are described in clause 4.

b) PCSDL (PCS Description Language). Part of the PCS is the definition of the syntax for the
various types of companion standard documents that make them readable by computer
tools. The PCSDL is described in clause The Companion Standard Reference.

c) Function block description. The function block description is a high level and graphical
description of applications using the IEC 61162-4 series interface standard. The function
block syntax is specified in clause 7.

d) PFS (PISCES Foundation Specifications) which contain a framework for classification of
applications adhering to the IEC 61162-4 standard. The PFS will also provide a minimum
level of interoperability between different manufacturers’ applications using this framework.
The PFS is described in clause 6.

Clause 5 contains the complete reference to the PCS description language. Clause 5.2
explains the basic concept of the PCS which is given by the distinction between four types of
specifications: applications, interfaces, information and data types. General conventions with
respect to the syntax of the PCS can be found in 5.3. All PCS documents are based on a
similar structure. This approach is intended to make it easier to become familiar with the
syntax and semantic of the PCS which is defined in 5.3.1. The four clauses thereafter explain
in detail the syntax and semantic of the four different types of specifications generated by the
PCS.

Clause 6 describes the relationship between the different classes of IEC 61162-4 applications
and gives an overview of their functionality. Annexes contain the detailed PCS definitions for
the classes.

1.2 The Purpose of Companion Standards

The objective of companion standards is to provide definitions of the information that is
transferred within an integrated ship control systems and of how these information items can
be accessed or provided. Further more, the standard shall allow the definition of the actual
network interfaces the applications use to connect to the system. The description format is
machine-readable, allowing an automatic compilation of the description into interface software.

A companion standard allows the reader to at will shift the focus between a technical
specification and a definition of interfaces and information items. The development team can
determine information attributes like unit, power, accuracy and the structure of the system
architecture and create a common interpretation basis for data before the system
implementation. The formalisms underlying the specification language will at the same time
provide an unambiguous and precise description of the equipment interfaces which allow the
use of computer tools to automatically generate interface program code or to inspect and
manipulate interfaces on-line, e.g., for debugging and monitoring purposes.

2 Normative references

All normative references defined in IEC 61162-400 are also normative in this part of the
standard.

The following normative documents contain provisions, which through reference in the text,
constitute provisions of this International Standard. At the time of publication, the editions

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 9 –

indicated were valid. All normative documents are subject to revision, and parties to
agreements based on this International Standard are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards

IEC 61162-400: (to be published), Maritime navigation and radio communication equipment
and systems - Digital interfaces - Part 400: Multiple talker and multiple listeners - Ship Systems
Interconnection – Introduction and General Principles

3 Definitions

For the purpose of this International Standard, the following definitions apply

3.1 Terms and abbreviations

Abstract specification
PCS specifications that are part of the PFS (defined in this documen) are not intended for
direct implementation and is termed “abstract”.

Application interface
A collection of interface components instantiated in an application definition document as one
protocol level interface

CP – Connection Point
An application interface consists of a number of individual “functions” that can be called into or
out from. Each of these functions, as it references a remote entity is called a “connection
point”.

CS – Companion standard
A protocol layer on top of the normal OSI application level (see definition of companion
standard in [IEC 61162-400]), representing the definition of how the application layer
functionality is used to implement a certain application’s interface functionality. Also called user
layer.

Function block
A high level, partly graphical representation of an application’s place in an integrated system.
The function block presents all interfaces and relationship between these on an overview level.

Interface (component)
An interface component is a collection of connection points (CP) in one INTERFACE definition
document. This interface component can be aggregated with other interface components into
an actual interface as defined in the A-profile. The actual interface (A-profile sense) is defined
as the application interface in the APPLICATION document.

PCS - PISCES Companion Standard
The complete concept of companion standards, including description language (PCSDL),
function blocks and the foundation classes (PFS).

PCSDL - PISCES Companion Standard Description Language
The formal interface description language for PCS.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 10 –

PFS - PISCES Foundation Specifications
The interface base classes for all applications created in the framework of the PCS.

Tangible
A specification of an entity that shall be implemented (instantiated) at some time.

3.2 General Typographical Rules in this Document

The following typographical rules apply throughout this document:

a) Fragments and complete pieces of PCSDL source code is written in Courier
b) Tokens written in capitals, typeset in COURIER are reserved PCSDL keywords.
c) Words in pointed brackets, '<' and '>', define place-holders that have to be filled with the

appropriate token as described in the text.
d) Tokens in square brackets, '[' and ']', define tokens that are optional, e.g. parts of a

statement that is only required under special circumstances.
e) Ellipses, . . ., show that the preceding item can be repeated.

Clause 5.3 defines other typographical and lexical conventions that apply to PCSDL
documents.

4 General Principles for the PCS

4.1 General Structure

4.1.1 Purpose

The main purpose of the PCS is to give an unambiguous way to interpret data transmitted via
the IEC 61162-401 A-profile protocol. In this sense, the companion standard adds meaning to
the data transmitted via the protocol, converts it to information and makes it usable for
application modules connected to the network. To serve this purpose, the PCS shall provide
the following:

a) Establish a language to define information types, application interfaces and applications.
This language has to be human readable as well as interpretable by a computer. It is called
PISCES Companion Standard Description Language (PCSDL).

b) Provide a standardised set of information types and interfaces which can be used as a
basis to create customised (i.e., vendor specific) application and interface descriptions.
This set is also called the PISCES Foundation Specification (PFS, see 4.4).

c) Provide a general framework for a high level description of applications that use the IEC
61162-4 standard for communication. This is the function block specification format.

4.1.2 Components of the PCSDL

The PCSDL supports the generation of four different types of specifications as outlined in the
following clauses.

The three first document types can be used to generate protocol (A-profile) related entities,
e.g., data object names, MAU names and format strings. The information specification can be
used to add more application related meaning to the information entities. The information
specifications can also use an extended format string syntax to implement higher level
functionality based on the A-profile specification.

4.1.2.1 Application

Representation of application units within the PCS. An application is defined by application
interfaces specifying the respective inputs and/or outputs. The application specification can be

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 11 –

looked at as the specification of how one particular piece of equipment is connected to the
system. Applications will normally consist of a number of interfaces configured as either
providing data to or using data from the system.

4.1.2.2 Interface (component)

Specification of connection mechanisms used between applications. Each interface has one or
more connection points (CP). Each connection point specify one or more information types
received or provided by the respective interface. The connection point specification consists of
the data structures transferred, the information the data structures carry and how the
information can be accessed (read, write etc.).

4.1.2.3 Data type

Data type definition specifies the structure and to some degree the content of data transmitted
via the PISCES network. This document can be optionally exchanged or complemented with
information specifications.

4.1.2.4 Information

An information specification represents and defines the content and interpretation of data
transmitted via the PISCES network. The purpose of these specifications is to define the
format of exchanged data and specify the usage of the respective information. This type of
document extends and replaces the function of the data type definition by making it possible to
give more meaning to the data structures. Any information specification can be converted to a
data type definition, but at a loss of information meaning.

NOTE – The information type specification is not currently used in the PFS. At this time only the data type
specification is used to define structure and contents of transmitted data blocks. However, it is recommended that
the information type is considered for new specifications.

4.1.3 Object based principles in the PCSDL

4.1.3.1 General

The PCSDL supports an simplified object based view on companion standard specifications.
To create companion standards, the following object based principles can be applied.

All specifications used within PCS are seen as encapsulated structures defining their own
scope and domain. Each specification can be used as a “building block” to create new
specifications following the rules given in clause 5. Two different mechanisms are available to
compose new specifications from existing ones: Specialisation and Aggregation.

4.1.3.2 Specialisation

The PCSDL gives the opportunity to derive new specifications from existing ones. The new
specification (i. e. application, interface or information) inherits all properties from the old
specification called the base specification). This mechanism forms a generalisation-
specialisation relation between these two specifications.

4.1.3.3 Aggregation

It is possible to compose new specifications by aggregating two or more existing specifications.
A complex information type can e. g. be formed by including several information specifications
into a new specification. The same applies for composing complex application interfaces from
one or more interfaces (see 5.6).

Specifications for applications, interfaces and information are included in three separate
hierarchies, see Figure 1. Each hierarchy stems from a base specification covering properties
common to each specification of the respective type (i. e. information, application or interface).
An overview of the PFS hierarchy for applications is given in annex E.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 12 –

4.1.3.4 Data types versus information

The current version of the PFS does not make use of interface specifications and neither
theobject oriented principles inherent in that. Instead, the less advanced data type definistions
are used. This is due to legacy companion standards from previous versions of this document
(see MiTS in Part 400).

NOTE - This part of the standard emphasises the information type documents as it is believed that this will be the
description method of choice in the future. However, the reader may want to concentrate on data type documents
as they are the document type most commonly used as of this version of the standard.

4.1.4 Generic and manufacturer specific companion standards

The general approach recommended by PCS is to divide the set of companion standards into
two different parts (Figure 1): Generic CS and manufacturer specific CS. Generic CS will be
defined by the PFS. The PFS contains “generic” specifications for data types, information,
interfaces and applications. These specifications can be used by manufacturers as a starting
point to define own specifications to describe their respective equipment. This means that PFS
specifications can be used as templates to create equipment specific specifications. This
mechanism forms a generalisation-specialisation relation between the newly created
specification and the respective specification of the PFS. It has to be noted that specifications
which are part of the PFS are “abstract” in that sense that they can not be used directly to
specify equipment. A tangible PCS specification of a component has always to be derived from
a PFS specification.

Information Interface Application

PICInformation PCCInterface PACApplication

PICInfo1 PICInfo2 PCCInt1 PCCInt2 PACApp1 PACApp2Generic CS
(PFS)

Manufacturer
specific CS

CInfo3 CInfo4 CInt3 CInt4 CApp3 CApp4

Figure 1 - General structure of PCS hierarchy of specifications

To form specifications of information, interfaces or applications, direct inheritance mechanisms
can be used. The new specification inherits all properties from the specification it is derived
from (the base specification). When deriving new specifications from existing ones, it is only
allowed to add attributes to the newly created specifications (see also 4.2.5). Thus, the
following mechanisms are the only permitted by the PCS description language:

a) Generation of a new application specification: Derivation of the new specification from an
existing one (abstract or tangible specification) and addition of new application interfaces
(see 5.5).

b) Generation of a new interface specification: Derivation from an existing interface
specification (abstract or tangible specification) and addition of connection points (see 5.6).

c) Generation of a new information specification: Derivation from an existing specification and
addition of attributes, i. e. data types or information (see 5.7).

d) Creation of new data type specifications (see 5.8).

4.1.5 Generic Companion Standards (PFS)

This part of the companion standards defines generic information or data types to be
transmitted via the A-profile protocol and standardised interface or application descriptions.
With respect to physical components these generic descriptions define the minimum required
functionality (including the information they shall provide) of the component concerned. Generic

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 13 –

companion standards, including application, interface, data type or information specifications,
are part of this standard and shall not be modified by manufacturers.

Thus, applications, interfaces and information specifications contained in the generic
companion standard form „abstract specifications" and normally it makes little or no sense to
use these directly as full specifications for actual applications. Normally, it is necessary to
create a more concrete specification (a "tangible specification"), by deriving it from one of the
abstract specifications.

NOTE - Generic companion standards provide the "least common denominator" for information interchange via the
PISCES protocol. For instance a physical position sensor will at least own the interfaces defined for a “generic“
position sensor. In this sense these generic application and interface descriptions have to be in line with the
respective IMO performance standards.

The collection of generic specifications defined by the PCS is called the PISCES Foundation
Specifications (PFS).

4.1.6 Manufacturer Specific Companion Standards

To satisfy the needs of specific (i.e., physical) components, a manufacturer creates specific
companion standards for information type, data types, interfaces or applications. These
companion standards are derived from generic companion standards (see 4.2.7). In general, a
manufacturer specific companion standard for e. g. an interface will contain the content
(information types, attributes etc.) of the respective generic companion standard as a sub-set.

NOTE - The main advantage of this approach is that there is no need for a manufacturer to develop his or her
specific components from scratch. This accelerates the process of specification and implementation significantly.
The second advantage is that any interface derived from a generic PCS interface description provides as a
minimum the information types defined within the respective specification of the PFS: even if a manufacturer
specific companion standard is unknown, the services of the respective "template" can be used. For example: If
manufacturer B wants to connect his ECDIS system with a GPS receiver of vendor A, the manufacturer can at least
receive the information types of the generic GPS interface (i. e. position, satellites in view, valid flag and time),
even if he does not know the specification of the customised interface. Only the generic interface used as the
template has to be known in this case.

Companion standards for information types, interfaces and applications are defined within
hierarchies (Figure 1). Information types and interfaces will be derived from the respective
base specification defining the properties (attributes) common to all specifications derived from
this base. There is also a base specification for applications.

The limit between the generic (normative) and the “customised” (manufacturer specific) part of
the PCS is formed by a “horizontal cut” within the respective specification hierarchy. This is
indicated by the dashed line in Figure 1.

Attributes and methods necessary to implement services that are needed from the A-profile will
also be defined within the highest-level base specifications. They are implemented by several
specialised generic interfaces. These interfaces are described within 4.4.

To provide a high level description of a new application, the manufacturer should also provide a
function block specification of the application (clause 7).

4.1.7 Guidelines for using PCS

This clause gives an overview of how to use the PCSDL to create specific companion
standards. The starting point is the need to connect a new application to a IEC 61162-4
compliant network. To implement such a connection, the following steps have to be carried out:

a) Identify the necessary interaction between the application concerned and other applications
in the system. Add possible interactions to possible future applications where appropriate.
Group these interactions roughly into draft PCS “application interfaces”. If possible, the
draft should be based on an already existing similar application which is known to be
conformant to the PFS.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 14 –

b) Construct a function block that can be used to describe the new application. The function
block should identify input interfaces, output interfaces, physical relationships between
application and environment and the applications functionality.

c) If an appropriate application specification does not already exist, derive a new application
specification from a PFS template (i.e., an application base specification contained in the
PFS) and adapt it by adding new application interfaces.

d) Determine the number and type of each connection point in each of the application
interfaces. Add new connection points to existing interfaces where appropriate. Sub-divide
each application interface into separate interfaces where appropriate (see below) and
create the new interface specification documents, either based on existing interface
specifications, from scratch or by inheritance from interfaces in the PFS.

e) Determine input/output formats for each new connection point in the interfaces. Describe
this in information and/or data type documents, where possible using inheritance from
existing PCS specifications.

f) Create the final application specification document by using specialisation from the
appropriate component in the PFS library and adding the newly developed or modified
interfaces.

Note that application interfaces are defined only in application specifications. Each
application interface consists of one or more interface components, grouped together to form
one interface module as seen from the application. Each of the interface components is
defined by one interface specification. This approach ensures high flexibility for adapting
application interfaces to specific needs of applications by creating a building block system for
interfaces.

Application base
specification

New Application

Derive

Application
Interface

Add

Interface
Add

Interface base
specification

Derive

Connection
Point

Add

Data Type Information

AddAdd

PFS
Application specific

Figure 2 - Generating applications

Figure 2 shows the way to create an application specification derived from a template (“base
specification”, i.e., the PFS).

As stated above, a new application specification must be created by deriving it from an existing
PFS compliant specification. The newly created application will inherit all application interfaces
from the respective base specification. The only mechanism allowed to adapt this newly
created application specification to specific needs is to add application interfaces to it. A new
application interface is created by grouping one or more existing or newly created interface
specifications. As with application specifications, specifications of new interfaces have to be
derived from existing specifications (i. e. abstract interface specifications of the PFS or other
existing interface specifications). Newly created interfaces will inherit all connection points from
the respective base specification.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 15 –

Newly created interfaces can be adapted to specific needs by addition of connection points.
Connection points already defined for that interface (i.e., those specified in base specifications
of the interface in view) may not be changed. As shown in Figure 2, connection points form
collections of data types or information specifications. They may contain zero or an arbitrary
number of attributes (data types or information specifications). It is also allowed to have empty
connection points. Data types and information specifications shall not be mixed in one
connection point.

4.2 Products of the PCS

The PCS is basically a formalised way to describe the system interfaces of applications that
use this standard. This means that the PCS must specify certain protocol entities that are used
in the establishment of connections between applications and in the exchange of information.
These entities are described in the following clauses.

There are also other entities produced from the PCSDL documents. These are either used in
special protocol entities (priorities, load limitations) or in various PFS defined interfaces
(authentication and application management). These entities are defined in the last two
clauses.

Note that there is a difference in whether applications are clients or servers of a particular data
object. These differences is based on the fact that the server will generally be less configurable
than the client.

4.2.1 MAU name

The server MAU name is one of the connection attributes of the data objects used for
communication. The application document defines the MAU name. Note that the document may
specify that the MAU name shall be configurable, in which case the MAU name is defined
during system integration by the help of some configuration tool.

4.2.2 Interface name

The interface name is common to a group of data objects that are connected to en block during
connection establishment. The interface name is one of the data object attributes. The
interface name is determined in the application document. The interface name can in some
cases be configurable. In this case, the ability to configure the name will be made explicit in the
application document.

4.2.3 Interface class name

If an interface name is changed during configuration, the old interface name as specified in the
application document shall be saved in the application and made available to configuration
tools as the “interface class name”.

The interface class name is not used during connection establishemnt and can in principle be
disregarded by applications not conformant to the PFS.

4.2.4 Data object name

The data object name is another data object attribute that is used during connection
establishment. The data object name is defined by the interface document. It is not possible to
configure this name.

4.2.5 Data object function

The data object may represent one of several function types, e.g., read, write or subscribe. The
functional capabilities of a data object is determined in the interface document. One data object
can have only one function, but several data objects with the same name in the same interface

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 16 –

can be distinguished between by their function (or data structures). This is similar to name
overloading in object oriented languages.

4.2.6 Data object structure

In addition to function, each data object is also recognised by the input and/or output data
structures. The data structures are defined either in the interface document itself, in a data
type document or in an information document. On the protocol level, it is only the structure of
the data element that is important for establishing contact. However, the protocol has
provisions for embedding information contents requirements in the data structure (see 4.2.7).

4.2.7 Data object information contents

For meaningful exchange of information, the participating applications need to know more
about the sent and received data than just their structure. This aspect is partly covered in the
data type document, where meaningful interpretations of data structures usually are defined
together with the definition of the structure itself. It is also possible to give meaning to the data
structures in the interface documents in conjunction with defining the functional scope of an
interface. A third method is to require additional documentation from a provider of a server
MAU. This requirement can be specified in the application document.

However, the preferred way to give meaning to data structures is through the information
document type. This document can either be an addition to the data type document or replace
the data type document all together.

4.2.8 Run-time library information items

Some parts of the companion standard documents generate attribute values for the run-time
system that implements a MAU. These items are:

a) Load related attribute values, i.e., number of clients for an accept type interface or
transaction queue length for all types.

b) Priority for various connection points or interfaces.
c) Password for interfaces.
d) Watchdog timer for the MAU.

These parameters are set in the application definition header and in conjunction with the
definition of accept and connect interfaces in the same document.

Some of the attribute values are most commonly specified as configurable, e.g., password.

4.2.9 PFS information items

Parts of the companion standard documents do also generate various information items that
are used by the PFS. These items i sused by software libraries and parts of the PFS to
generate various configuration tables. These items are:

a) Version codes for PFS base class.
b) Authentication parameters in application and interface component documents for use in

user authentication interface classes.
c) Manufacturer and model information for application management classes.
d) Original classes of interface classes that are renamed in application documents.

4.3 The PISCES Foundation Specifications (PFS)

The PFS contains the generic part of the PCS. The PFS consists of the following parts:

a) Application foundation specifications.
b) Definition of generic interfaces (see 4.4).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 17 –

c) Data type specifications

Application foundation specifications form aggregations of standard interfaces according to the
functionality to be covered by the respective generic application.

4.4 Generic Interfaces in the PFS

The purpose of generic interfaces specified in the PCS is to give the developer access to the
services provided by the A-profile. Annexes in this fragment contains companion standards for
the following interfaces:

a) Retrieval of general information about applications and interfaces like version codes,
manufacturer and type of equipment.

b) Interfaces to change/assign control to a specific console combined with authentication of
user and workstation, e.g., to change control, acknowledge alarms or change system
parameters.

c) Specialised interfaces of a “system MAU“ associated with each LNA for system
management on the application level, e. g. retrieve network statistics or report attributes of
local MAUs.

d) General mechanisms for retrieving and manipulating data based on tagged information
entities. These mechanisms include search, read, write, subscribe and alarm manipulation.
The mechanisms can be used for general data access as well as for implementation of
alarm systems. This includes an interface to transmit or receive stream based data

e) General interface for transmission of IEC 61162-1 telegrams over a system network.

5 The Companion Standard Reference Specification

5.1 Introduction

This clause contains the complete reference for the PISCES companion standard description
language (PCSDL). It contains all information necessary to understand the companion
standards contained in the PISCES foundation specifications (PFS) and to write own
companion standards based on the PFS.

Clause 5.2 explains the basic concepts of the PCS. Clause 5.3 defines the general conventions
with respect to the syntax and semantic of the PCS description language. It explains the use of
tokens (identifiers, keywords and literal constants) and the use of white-space elements
(delimiters, indentations, comments etc.). Clause 5.3.3 concludes with the explanation of
naming rules with a particular focus on the scope rules for the identifiers.

As explained in 4.2, the PCS can be used to specify four types of entities: applications,
interfaces, information and data types. These four different document types have a common
structure, formed by a header specifying general properties for all definitions in the document
and a body containing the individual definitions. The body of the definition document normally
consists of several blocks, each identified by a keyword. This general structure will be
elaborated on in 5.4.

Clauses 5.5 to 5.8 contain the specification of the description language for each documentation
type mentioned above. Each of these sections have the following layout:

a) A short overview explaining the purpose and the properties of the document in question.
b) A description of the general layout of the respective document. This description includes

the general properties than can be set within the header of the document and an overview
of the blocks allowed in the body of the document.

c) A detailed reference to the syntax of the respective blocks.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 18 –

5.2 Basic Concepts of the PCS

PCS supports a simplified object based principles for specifying protocol entities. To create
new companion standards, the mechanisms of aggregation and specialisation can be used.
Specialisation means that new companion standards can be derived from existing
specifications. The new specification “inherits” all properties from the base specification it is
derived from (see Figure 3).

Information base
specification

Information
specification

DataType

Interface
specification

Interface base
specification

Application base
specification

N

1

Connection point

1

1

N N

0

1

0

Application
specification

Application
interface

1

N

Information Data type Interface
N

N N

N

1

N

Figure 3 - Relationships between specifications of the PCS

The following types of specialisation are possible for PCS:

- Derived applications will inherit all application interfaces from the respective base
specification.

- Derived interfaces will inherit all connection points from the respective base specification.
- Derived information specifications will inherit all attributes from their base specification.

Attributes may be of the types data type or information.

Newly created specifications can be adapted to specific needs by adding properties to them.
This mechanism is called aggregation. The following aggregation mechanisms are allowed for
companion standards:

- Application specifications can be adapted by adding application interfaces to them. Each
application interface consists of a set of interfaces. For every interface used, a
corresponding interface specification must exist. Application interfaces already defined in
base specifications may not be changed.

- Interfaces can be extended by addition of connection points. Connection points use one or
more information or data types. For each information or data type used a corresponding
specification must exist. Connection points already defined in base specifications can not
be changed. Data types and information specifications shall not be mixed in one connection
point.

- Information specifications can be adapted by adding new attributes to them (data types or
information).

The mechanisms of specialisation and aggregation form relationships between the different
specification types as elucidated in Figure 3.

5.3 Conventions for companion standard specification files

This clause covers general typographic conventions that apply to the PCS description files. It
covers the use of tokens (5.3.1) and general naming rules including specification of the scope
of named objects (5.3.2).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 19 –

5.3.1 General principles

The files shall contain only characters from the 8 bit ISO 8859-1 character set, except where
literal characters or strings are used. For literal character types, it is legal to use 16 bit
characters where supported by tools and computer system.

NOTE – The actual representation of long characters must be checked in the programmer’s references.

Only printable characters, the newline control code and whitespace are allowed.

No more than 80 printable characters (including whitespace) are allowed on one line. A
continuation symbol can be used to continue a long line before a newline control code. The
continuation symbol is the backslash, ‘\’.

5.3.2 Tokens

The basic element of the PCS description language is the token. A token in the PCS can be of
one of the following types:

a) Identifier: Token to refer to a named entity in a specification. An identifier is defined by its
name and scope.

b) Keywords: Reserved words of the PCS description language (see annex A).
c) Literal constants: tokens to express a constant value. Literal constants can be of several

data types (e.g., integer, floating point, character or string).
d) Delimiters.
e) White space.

The following paragraphs give the typographic conventions that apply to these tokens.

5.3.2.1 Identifiers

Identifiers can be any sequence of letters or numbers. First character has to be a letter.
Capitals and lower case letters will be distinguished between. All characters of an identifier are
significant.

5.3.2.2 Keywords

Keywords are always in capitals. A list of the PCS keywords is given in Annex A. To enhance
readability, keywords should be avoided when used out of context, e.g., in comments.

NOTE - Because the PCS description language distinguishes between capitals and lower case, it is generally legal
to use keywords in lower case or in mixed-case variants e. g. for identifiers. However, to avoid confusion for the
reader it is not recommended to do so.

5.3.2.3 Literal Constants

Literal constants are representing explicit values. Depending on the data type expressed by a
literal constant, the following types can be distinguished:

a) Integer constant: representation of integers by a sequence of digits, e. g. 4123. The
number can be signed or unsigned, in hexadecimal, octal or decimal.

b) Character constant: representation of one character [ISO 8859-1], e. g. 's'. Long
characters are also legal as literal where supported by computers and tools.

c) Floating constant: A floating constant consists of an integer part, a decimal sign, a
fractional part, an optional e or E as exponential sign and an unsigned or signed integer
exponent. The integer as well as the fractional part consists of a sequence of decimal
digits. For instance 3.1415926 or 123.1e-5 are valid floating constants.

d) String constant: A string is a sequence of characters from the ISO 8859-1 character set,
e. g. "this is a string". Long characters are legal where supported by computer and
tools.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 20 –

e) Aggregate constant: This type is used to represent more complex data structures.
Aggregates can be records or arrays of the type {<token1>, <token2>, ..., <tokenN>}.

A formal definition of the allowed formats of these literal constants can be found in the annexes
of [IEC 61162-400].

5.3.2.4 Delimiters

Three types of delimiters are used:

a) Whitespace (see next clause) is used to separate other tokens in the documentation.
b) Newline is to be understood as the line separator character(s) used on a given platform, e.

g. a single line-feed (on a UNIX system) or a carriage-return followed by a line-feed (on
PC’s).

c) Block separators (see section 5.4) are separated by two or more newline delimiters, i.e.
with one or more empty lines between them.

5.3.2.5 White space

Whitespace is understood as one or more tokens that act as separators between tokens, but
which have no syntactic meaning. Any contiguous number of the tokens listed below is defined
to be “one” whitespace:

5.3.2.6 Indentation

For indentation the space character, ‘ ‘, shall be used. Indentations should be used to structure
the text (e.g., mark one block).

5.3.2.7 Comments

Comments can be placed anywhere in the text to structure the document. The general operator
that starts a comment to the end of a line is the semicolon ‘;’. Comments can be at the
beginning of a line to mark the entire line as a comment or within a line – in the latter case the
rest of the line is a comment.

NOTE - Newline following whitespace is a newline token even if the whitespace is part of a full line comment.

If a comment is extended over more than one line, it has to be marked with an asterisk, ‘*‘, as
first character. A multiple line comment has to be terminated by a block delimiter (two or more
newlines).

;----------------------------
DATA BLOCK Time
 * A representation of
 relative time

word32_m sec ;seconds
word32_m usec ;micro-seconds

Comment over an entire line.

 Multiple line comment with
indentation, delimited by newlines.

 Declaration followed by comment

Figure 4 - Example comments

NOTE - Although the comments described here are not evaluated by a computer reading the description files, they
have a significant impact on the human readability of PCS documents and are highly recommended.

5.3.3 Name structure

Identifiers for data types (interpretation, data blocks or constants), application, interface or
information specifications may contain a mix of upper and lower case letters, digits and the
special character underscore, ‘_’. They should normally start with an upper case letter.

NOTE - The A-profile uses these identifiers as attribute values during connection establishment, but does not
enforce any rules on their construction other than that they do not contain the null character.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 21 –

Other identifiers, e.g., attribute names, may contain the same mix of printable characters. For
uniformeness in psecifications, they should start with a lower case letter.

5.3.4 Name scope

The scope of an identifier depends on its type. Identifiers declared within application, interface
or information specifications are local to the respective specification. Dependent on
specification type, this affects the identifiers as follows:

- Applications: Identifiers for interfaces specified within application specifications are local
(5.5).

- Interfaces: Identifiers for connection points defined within an interface or identifiers for
connection points defined in another interface referenced and reused by this interface is
local to this interface (5.6).

- Information specifications: Identifiers for attributes to the information type are local (5.7).
- Data types: These are scoped dependent on being declared as local or global (see below).

Data type specifications contain two different sections, one for local and one for global
variables. These sections are marked by the keywords LOCAL and GLOBAL:

- Data types (i.e., interpretations, constants and data blocks) within the LOCAL section are
local to the respective specification. As for the specification types mentioned above, they
are accessible from other specifications only via the scope operator, ‘.’.

- Data types within the GLOBAL section have global scope. This means that they are
accessible from all specifications referencing the respective data type specification directly.
In this case, the use of the scope operator is optional.

NOTE – The purpose of the GLOBAL keyword is to allow the definition of data types that can be used without scope
operator in later documents. This simplifies the text of specifications.

The LOCAL section has to precede the GLOBAL part of data type specifications. If no keyword is
used, the section is assumed to be global.

To make reference to a scoped identifier, the name of the scope it belongs to have to be
prefixed and followed by a full stop, ‘.’, delimiter. (e. g., myInformation.m_myMember).

5.3.5 Configurable identifiers and literal

Some identifiers, e.g., MAU and interface names may be specified as configurable during
system installation. This is typically necessary if several identical units (MAUs) are installed in
one system. In this case, each MAU must be given a unique name.

To specify in companion standard documents that an identifier or literal is configurable, it can
be enclosed in pointed brackets, ‘<’ and ‘>’. The documentation should specify where and how
the entity is configured.

5.4 General Structure of PCS Specifications

5.4.1 General

PCS documents are used to specify the following entities:

a) Application specifications.
b) Interface (specifications).
c) Information specifications.
d) Data types.

An outline of the general document is shown in Figure 5.

The specification consists of two main parts:

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 22 –

a) The specification header defines attributes of a general nature and is similar for all
document types.

b) The body of the specification consists of a sequence of blocks defining properties specific
to the respective entity type. The structure of this part is dependent on the document type.

The header is delimited from the body by a block delimiter.

<type> <parameter_list>
 [* description]

 <header keyword> <literal>
 . . .

;-----------------------------
;specification body
 <keyword> <parameter_list>
 [* description]

 ;body of block

;-----------------------------
;next block
 . . .

First line of specification indicates type.
Comment to describe the entity specified.
Each specification starts with a header setting
general attributes like version, date,
responsibility

The body of a specification consists of a
sequence of blocks giving the detailed
specification of the entity in view.

Figure 5 - PCS general structure

5.4.2 The specification header

All specifications starts with a keyword defining the type of entity that shall be specified.
<type> may be one of the following:

a) APPLICATION to specify an application
b) INTERFACE for an interface
c) INFORMATION to create an information specification
d) DATA TYPES to generate a data type specification.

A list of parameters is appended to <type>. The format of this list depends on the type
specified. The first parameter of the list always specifies the identifier (i.e., the name) of the
entity. For details on the syntax of the specific types see the following clauses.

The first line can be followed by a block comment giving a description of the content of the
specification.

VERSION <version_code>
DATE <date>
RESPONSIBLE <name>

One attribute definition
Another after a newline,
and another.

Figure 6 - Header

In the rest of the header, each line consists of a keyword naming an attribute to be specified
and a literal constant giving the attribute value. An example is shown in Figure 6. The lines
shall be separated by one or more newlines and/or block comments. The parser will normally
look for the first keyword of the body of the specification to determine that the header has
ended.

The following header fields are common and required for all PCS specification documents:

a) VERSION <version_code> The VERSION keyword sets the version of a PCS entity to the
value given by <version_code>. The version code shall be written in the format N.N where
N may be any integer-constant. Leading zeros are allowed (like e. g. 0.001).

b) DATE <date>: Defines the date of creation of the entity to <date>. The date shall be in
the form YYYY-MM-DD with YYYY specifying the year of creation, MM the month and DD
the day (all fields are integer-constants). For instance 2000-08-03 is a valid date.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 23 –

c) RESPONSIBLE <name>:This field specifies the responsible organisation and author of the
specification. It may be any string-constant. This field should normally name the
organisation and person in the organisation responsible for further maintenance of the
document.

5.4.3 The specification body

The basic element of the specification body is the block structure. Each block starts with a
keyword indicating the type of block followed by a list of parameters. The available types of
blocks are dependent on the type of entity to be specified. Details on legal blocks and the
respective syntax will be given in the following sections. Blocks are separated from each other
by at least one block separator.

5.5 Application specifications

5.5.1 Overview

An application specification is the description of the interfaces of one application unit that shall
be connected to the IEC 61162-4 network. Each application specification consists of a set of
one or more interface specifications. A PCS application specification, with its referenced
documents, contains all necessary information to create the programming code that
implements the interfaces of the application unit.

New application specifications can be derived from existing ones. The new specification
inherits all properties from the existing application specification, i. e.:

- Attribute values defined in the header of the respective base specification
- All interfaces specified by the base specification

5.5.2 General Layout

Figure 7shows the general layout of the application specification. Examples of application
specifications can be found in the annexes.

The keyword APPLICATION fefines the start of an application specification. The syntax of the
statement is as follows:

APPLICATION <appl_name> DERIVED [FROM] <base_application>

The identifier <appl_name> defines the name of the application (the MAU name). The keyword
DERIVED shows that the application is derived from a base specification given by the identifier
<base_application>. This identifier has to be a valid reference to another application
specification. The keyword FROM is used to make the statement more readable. A tangible
application specification shall be derived from a base specification. Only abstract specifications
(specifications part of PFS) need not to be derived from base specifications.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 24 –

APPLICATION <appl_name> DERIVED [FROM]
<base_application>

 <general header>

;---
-
 REFERENCES
 <interface_name> [version]
 . . .

;---
-
 USAGE
 [* description]

;---
--
INTERFACES
 [* description]

 ACCEPT <interface_name>
 [* description]

 <properties of the interface>
 . . .

 CONNECT <interface_name> ON <server_name>
 [* description]

 <properties of the interface>
 . . .

Figure 7 - General layout of an application specification

A block comment should follow the first line, giving a short overview of the application
specified. It is recommended also to supply also a revision history where appropriate. This is
not part of the formal syntax and can be included after the description by another comment
block.

5.5.3 Header

As for all entity types covered by the PCS, an application specification is divided into a header
and a body. In addition to the general properties listed in clause 5.4 the following entries can
be defined in the header of application specifications:

VERSION <version_code>
DATE <date>
RESPONSIBLE <name>
[MANUFACTURER <name>]
[MODEL <name>]
[WATCHDOG <interval ms>]
[AUTHENTICATION [<user>:<password>,< user>:<password>, . . .]]

Figure 8 - Application header

a) MANUFACTURER <name>: this attribute specifies the manufacturer of the application
specified here. Name may be any character string.

b) MODEL <name>: the model name of the application should be given here. This attribute is
used e. g. to distinguish between different variants of a product family. Name may be any
character string.

c) WATCHDOG <interval ms>: this field specifies an optional watchdog interval (in
milliseconds) that is used by the LNA to periodically interrogate the state of the MAU.

d) AUTHENTICATION <user>: <password> This field specifies that authentication is used for
all interfaces in the MAU and may, optionally, specify available user and password codes.
The latter is normally not included in open documents. Authentication uses a dedicated
PFS interface.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 25 –

5.5.4 Body

The specification body shall consist of three main blocks in the order shown in the following
clauses. All blocks shall be present, although they may be empty or consist of just comments
as, e.g., the USAGE block.

5.5.4.1 References

Each external interface has to be referenced before it can be used in the INTERFACES blocks.
This is done in a block that starts with the keyword REFERENCES. Each additional line of this
block contains a reference to an interface in the form:

<interface_name> [version]

<interface_name> shall be the name of a valid interface. To distinguish between different
versions of one interface the version code may be specified as a text string. This string, if
present, will be compared to the version code specified in the header of the referenced
interface. A mismatch shall cause a parser error.

5.5.4.2 Usage

This block gives a description on how the application should be used. The block starts with the
keyword USAGE, but the remainder of the block must be formatted as a block of comments.

5.5.4.3 Interfaces

The INTERFACES block contains the specification of the application interfaces the application
is provided with. Each application interface identifier is prefixed by the keyword ACCEPT (for a
server interface) or CONNECT (for a client interface). The keyword line may be followed by a
block comment giving a description of the purpose and functionality of the respective
application interface.

5.5.4.4 Accept type interface

The syntax used to specify a server interface is illustrated in Figure 9.

ACCEPT <interface_name>
 [* description]

 [MAX MESSAGE RATE <msg_per_sec>]
 [AUTHENTICATION [<user>:<password> . . .]]
 [CLIENTS <numb_clients>]
 [TRANSACTION QUEUE <num_trans>]
 [PASSWORD [<passwd>]]

 INTERFACE [COMPONENT] <name> . . .

Figure 9 - Accept interface template

The specification of a server interface starts with the keyword ACCEPT. The newly created
interface will be named <interface_name>. The name may be specified as configurable by
enclosing it in pointed brackets. The interface will be composed of a number of interface
components as specified at the end of the example.

A number of properties can be specified for the server interface by using a set of property
definition statements. These statements must be placed between the header line and the first
interface component definition. They may be listed in any order. Each statement shall be one
line, separated from other lines by one or more newlines. The following properties may be set
for a server interface:

a) MAX MESSAGE RATE <msg_per_sec>: This entry is not converted to a protocol entity. It
is used to check and verify system and module load. It shall specify the maximum number
of transactions (including connection attempts) that the server application accepts on this
interface.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 26 –

b) AUTHENTICATION <user>:<password>: If user authentication is required for the
respective interface, this property has to be defined. The user and password fields may
optionally be specified to list the available users. The password may be specified as
configurable.

c) CLIENTS <numb_clients>: the maximum number of clients that are allowed to be
connected to the server may be specified here. The token <numb_clients> is of integer
type. This property may be omitted if the maximum number of clients is not limited. The
limitation is enforced by the LNA by denying further connection attempt, after the number of
clients has been accepted by the MAU. The limitations do not apply to urgent connection
attempts.

d) TRANSACTION QUEUE <numb_trans>: the maximum number of pending transaction
requests that the server allows in the input queue may be specified here. The token
<numb_trans> is of integer type. This property will limit the number of transactions sent to
the server for a given interface. By delaying acknowledgements, the server can use this
limit to control its load. The limitation does not apply to urgent requests.

e) PASSWORD [<passwd>] If the server shall be protected by a password it may be specified
here. Note that the password normally will be configurable and that the string specified as
<passwd> usually is empty or a string in pointed brackets. The string will be the default
password for the interface.

The interface connection points are specified by a number of the following statements:

INTERFACE [COMPONENT] <name>

Each application interface consists of one or more interface components, each specified as in
the line above. All components specifications must be in one block (only one newline between
each line). The keyword [COMPONENT] is normally used to make the code more readable.
<name> has to be the name of a valid interface specification as defined in the REFERENCES
section (see above). The complete interface (consisting of all components) will be instantiated
as one A-profile interface and given the name set in the ACCEPT statement.

5.5.4.5 Connect type interface

The specification of a client interface is initiated by the keyword CONNECT. The definition is
similar to the accept type interface definitions, except for the prperties that can be set and the
definition of a server to connect to.

The identifier <server_name> has to be a valid name of an application acting as server for the
respective application interface (the server MAU name). The <interface name> must
likewise be the name of one of the application interfaces on the server. Both these names may
be specified as configurable.

CONNECT <interface_name> ON <server_name>
 [* description]

 [MAX MESSAGE RATE <msg_per_sec>]
 [PRIORITY [interface_comp[.conn_point]] <priority>]
 [TRANSACTION QUEUE <num_trans>]
 [PASSWORD <passwd>]
 . . .

 INTERFACE [COMPONENT] <name>
 . . .

Figure 10 - Connect application interface template

The following properties may be set for a client interface:

a) MAX MESSAGE RATE <msg. per sec.> This entry has the same function as for the ACCEPT
statement. It shall specify the maximum number of transactions generated by this client
application for this interface. This is a measure that may be enforced by the application, but
it is normally only tested against and is used as guideline for total system load calculations.

b) PRIORITY [interface_comp[.conn_point]] <priority> The PRIORITY flag can be
used to set the priority of an interface component or a specific connection point. If not

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 27 –

specified, the priority will be set to NORMAL. The connection point of the interface
component affected by this property is specified by the name argument. If the name
argument is omitted, the priority applies to all connection points in the application interface.
If the .conn_point component is omitted, the priority applies to all connection points in the
interface component specified. The constant-token <priority> shall have the values
NORMAL or URGENT.

c) TRANSACTION QUEUE. This is as for the accept interface.
d) PASSWORD. This is as for the accept interface, except that the password specified is that

used for connection to the server.

The remainder of the specifiction consists of one or more lines as follows:

INTERFACE [COMPONENT] <name>

These lines are used to specify the components of the application interface in the same format
as for the accept interface.

Note that a connect interface may contain a sub-set of the components that the server
supports in its interface. It cannot, however, have components that is not supported by the
server. This will result in a run time connection failure.

5.5.4.6 Handling of anonymous broadcast

If the application interface name is ABCMn or ABCn where n is a digit from 1 to 5, the interface
components shall consist of only anonymous broadcast connection points. For accept
interfaces, this means that a MAU name is disregarded.

These connection points shall be exported as listening (connect) or sending (accept) on the
specified broadcast port.

5.6 Interface component specifications

5.6.1 Overview

Interfaces are used in application specifications to describe the functionality and connectivity of
the application. The application specification defines application interfaces which consists of a
number of interface components. Each of the interface components is defined in an interface
definition document.

The format of interface component descriptions is defined in this clause. Interface components
themselves form aggregations of connection points. Each connection point specifies input
and/or output information available from the interface.

NOTE - In essence, interfaces describe the view on an application from the “outside world” – from an object
oriented point of view, interfaces specify the methods giving access to the internal structure and behaviour of an
application object. That means that all functionality and behaviour of an application visible from other applications
is given by the interfaces.

5.6.2 General Layout

Figure 11shows the general layout of the specification for an interface component. Examples of
interface specifications can be found in the annexes. The following clauses describe the
document in more detail.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 28 –

INTERFACE <interface_name> DERIVED [FROM] <base_specification>

 <header>

;--
 REFERENCES
 <info_name> [version]
 <data_type> [version]
 . . .
;--
 USAGE
 [*description]

;---
REQUIRED DOCUMENTATION
 <entity_name> [version]
 . . .

;---
CONNECTION POINTS

 <connection_type> <connection_name>
 [* description]

 INPUT
 [* description]

 <element declaration>
 . . .

 OUTPUT
 [* description]

 <element declaration>
 . . .

Figure 11 - General layout of an interface specification

5.6.3 Header specification

The keyword INTERFACE defines the beginning of an interface component specification. The
syntax is as follows:

INTERFACE <interface_name> DERIVED [FROM] <base_specification>

The identifier <interface_name> defines the name of the interface specification. This is later
used in application specification documents to identify the interface component. A block
comment should normally follow the first line, explaining properties and usage of the interface
component. The keyword DERIVED indicates that the interface is derived from a base
specification given by the identifier <base_specification>. This identifier has to be a valid
reference to another interface specification. The keyword FROM can be used to make the
semantics easier to understand.

It is mandatory to derive a tangible interface specification from a base specification. Only
abstract specifications (parts of the basic PFS) need not to be derived from base
specifications.

As for all entity types covered by the PCS, an interface specification is divided into a header
and a body. The properties to be set in the header are given in 5.4.

5.6.4 Body Specification

The blocks defined in the following clauses shall be part of the body of an interface
specifications.

5.6.4.1 References

Information or data type specifications used in the specification of connection points must be
referenced before use. Each line of the REFERENCES block contains a reference to an
information or data type specification in the form:

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 29 –

<name> [version]

<name> shall be the name of an information or data type specification. To distinguish between
different versions of specifications referenced here the version code may be given by the token
<version>. This is a string that, if specified, must match the version string in the referenced
document.

5.6.4.2 Usage

This block shall give a description on how the interface should be used. The actual contents is
a comment and is not parsed.

5.6.4.3 Required documentation

This block lists additional documentation required for proper interpretation of the interface
specification. This is mainly to instruct the parser/compiler of the PCS specification that it
should give a warning to the system integrator to check the availability of the specified
documentation. It will not generate protocol entities. Following the keyword a list is given as
one text block; each line in the block should normally contain an entry of the form

<entity_name> [version]

The token <entity_name> is a user defined symbol which one can assume identifies the
documentation in question. If version information is available for the documentation, it may be
specified by the token [version].

5.6.4.4 Connection points

This block contains the specification of the connection points the interface component
provides. Each connection point is specified by the following parameters:

a) <connection_type>: Keyword specifying the type of the connection as in the first column
of Table 1.

b) <connection_name>: Identifier specifying the name of the connection point to be created.

c) INPUT/OUTPUT: Dependent on <connection_type> (see Table 1) the connection point
needs an INPUT and/or an OUTPUT specification. The formats of both input and output
blocks are the same.

The connection types and corresponding input and output requirements are listed in the below
table. Note that an input or output field may be empty although the existence of the field is
required.

Table 1 - Connection point types

Keyword In Out

FUNCTION Yes Yes

READ Yes

WRITE Yes

NONACKED WRITE Yes

SUBSCRIBE Yes

INDIVIDUAL SUBSCRIBE Yes Yes

BROADCAST SUBSCRIBE Yes

ANONYMOUS BROADCAST Yes

The <element declaration> can take one of the following forms:

a) <information> <name>, the specification of a single information entity (previously
declared in the references section). This is then the output or input entity.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 30 –

b) <data type> <name> [. . .], the specification of a data type with the syntax as for a
data block (5.8.4.4.3). The single type, the array or the data block will then be the input or
output entity.
NOTE 1 – If a new data block is defined (over multiple lines) in this manner it may be given a name by the
parser for reference by application source code. The name will normally be the name of the connection point
with the postfix In or Out. This is, however, determined by the parser.

NOTE 2 – The use of a single data item or array will not cause a new data block to be defined. In this case,
only the actual data item or array is transmitted.

c) opaque <information> [count type:max size], the specification of a variable
length data block (as for variable length arrays in 5.8.4.4.3), where the interpretation is
defined in a n information document previously referenced.

The <name> field may be used by the parser to name application source code entities. It has
no meaning for any A-profile entities.

5.7 Information Specifications

5.7.1 Overview

Information specifications define information transmitted via a PISCES network. Mainly, two
properties of information entities will be defined:

a) Interpretation: The object based concept (i. e., assignment of information entities to a
specific type) and the transmission of additional information by complex data structures
allows the programmer to transmit data with an implicit “meaning”, see 4.1.

b) Structure: For high-level applications (e. g. decision support systems) it is not sufficient to
process only data. Additional information has to be available, e.g., source of information,
accuracy and time stamp. This leads to complex structures. The specification of the
internal structure of such complex data entities can be given in information specifications.

5.7.2 General Layout

Figure 12 shows the general layout of an information specification. Examples can be found in
the annexes.

INFORMATION <information_name> [DERIVED [FROM] <base_specification>]

 <header>

;--
 REFERENCES
 <type_name> [version]
 . . .

;--
 USAGE
 <description>

;---
ATTRIBUTES
 [* description]
 <attribute_list>

Figure 12 - General layout of an information specification

5.7.3 Header

The keyword INFORMATION defines the beginning of an information specification. The syntax is
as follows:

INFORMATION <information_name> [DERIVED [FROM] <base_specification>]

The identifier <information_name> defines the name of the information specification. This
name can be used by interface component specifications to specify an input or output to a
connection point. The optional keywords DERIVED FROM indicates that the information
specification is derived from a base specification given by the identifier

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 31 –

<base_specification>. This identifier has to be a valid reference to another information
specification. The keyword FROM is used to make the text easier to read. A block comment
should follow the first line, explaining properties and usage of the information entity.

As for all entity types covered by the PCS, an information specification is divided into a header
and a body. The properties to be defined in the header are defined in 5.4.

5.7.4 Body

The body consists of the blocks defined in the following clauses in the order they are
described.

5.7.4.1 References

The types used within the ATTRIBUTES block described below have to be referenced before
usage. Data types (5.8) and other information specifications can be referenced here. Each
reference has to be in the form:

<type_name> [version]

<type_name> has to be a valid name of an information specification, data block or
interpretation. To distinguish between different versions of one type the relevant version
number may be specified by substituting [version] with the relevant version string.

5.7.4.2 Usage

This block gives a description on how the information specification should be used. The field
<description> is a comment block and is not used by any parser.

5.7.4.3 Attributes

This block specifies the attributes of the information entity. Each attribute is declared on a
separate line, making up the block <attribute_list>. Each line use the following syntax:

<type_name> <attribute_name>

Where <type_name> may be one of the following:

a) A valid name of another information entity referred to in the REFERENCES block (see above)
b) A valid name of an interpretation or data block specified in a referenced data type

document (5.8).
c) One of the basic data types (see annex B).

An <attribute_name> is specified so that the parser can generate application code for the
information element.

5.8 Data Types

5.8.1 Overview

Data type specifications have three purposes:

a) Define new data types. A data block defines a new data type. This type is normally also
associated with an implicit interpretation.

b) Define interpretations. An interpretation describes how to understand the contents of data
of a given type. The interpretation declaration gives an old type a new name and defines a
new interpretation for this new type.

c) Define named constants. The constant declarations define constants with symbolic names
that can be used by the same or other PCS documents.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 32 –

The body of a data type specification is divided into two sections. The section identified by the
keyword LOCAL contains all data types having local scope. Data types with global scope are
included in the section marked with the keyword GLOBAL, see 5.3.3. Unless a data type,
interpretation, or constant is declared GLOBAL, the respective entity can only be accessed from
other specifications by using a scope operator. This is done by using a concatenation of the
data type specification name and the data type name with a dot (‘.’) as separator.

5.8.2 General Layout

Figure 13 shows the general layout of the specification of data types. Examples can be found
in the annexes.

DATA TYPES <module>

 <header>

;--
 REFERENCES
 <module> [version]
 . . .

;--
LOCAL
 * specify data types with local scope

CONSTANT <type_name> [OF <old_type>] IS <constant-token>
 [* description]

;---
INTERPRETATION <type_name> OF <old_type>
 [* description]

 <interpretation>
 . . .

;---
DATA BLOCK <type_name>
 [* description]

 <data_list>
 . . .

;---
UNION <type_name>
 [* description]

 <data_type> <item> [;description]
 <data_type> <item> [;description]
 <data_type> <item> [;description]
 . . .

;---
GLOBAL

 * specification of data types with global scope, syntax is as
 in the LOCAL section of the specification

Figure 13 - General layout of a data type specification

5.8.3 Header

The keyword DATA TYPES defines the beginning of the data type specification. The complete
syntax is as follows:

DATA TYPES <module>

The identifier <module> gives the name of the data type specification. A comment should follow
the first line, explaining properties and usage of the data types specified. Other header fields
are described in 5.4.

5.8.4 Body

The body of a data type specification consists of the following blocks in the listed order.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 33 –

5.8.4.1 References

External data type specifications necessary to define the entities of the current specification
shall be referenced here. This block consists of a list with each line containing a valid name of
a PCS data type specification. To distinguish between different versions the version concerned
here may be given by the token <version>.

5.8.4.2 Local data definitions

The keyword LOCAL introduces the specification of data types with local scope. These data
types are accessible from other specifications only via the scope operator ‘.’, see 5.3.2. The
section marked as LOCAL has to precede a GLOBAL section, if the LOCAL section is used.

5.8.4.3 Global data definitions

The keyword GLOBAL precedes the specification of data types with global scope. These data
types are accessible from other specifications directly without the use of the scope operator (‘.’
– see 5.3.2). The LOCAL section must precede the GLOBAL section if a LOCAL section is used.

5.8.4.4 Data definition types

Each local or global block consist of a number of data type definitions. These definitions can be
in any order. The following clauses specify the format of each type of definition.

5.8.4.4.1 Constant

The format of a constant definition is:

CONSTANT <type_name> [OF <old_type>] IS <constant-token>

The new constant named <type_name>, optionally specified to be of type <old_type>, is given
a constant value <constant-token>. <constant-token> can be any literal representable by
the optionally specified type, see 5.3.1. The type has to be a built-in type or a type that has
been defined earlier or in a referenced document.

5.8.4.4.2 Interpretation

The format of an interpretation is:

INTERPRETATION <type_name> OF <old_type>

 <interpretation>
 . . .

This block defines a new data type named <type_name> based on some built-in or previously
defined data type named <old_type>. The defined interpretations follows after a block
separator. Each line in the interpretation block defines a meaning for one discrete value that
the type is able to represent. The different variants are shown in the below table.

Table 2 - Interpretation forms

Form Description

literal = token Define a new token to have a constant value (literal)

token2 = token1 Define a new token1 to be identical to an old token2.

token Define a new token with no particular value

constant Describe the interpretation of a specific value

All forms can be supplied with an in-line description after a semicolon. The two variants using
an equals signs assign a new value to the left hand side token. The new token can be used in
other contexts in the definition documents. The constant tokens can be of one of the types
described in 5.3.1 or a symbol created in a constant definition.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 34 –

The two last lines in the table are used to give informal description of how a particular value or
a previously defined token or constant should be interpreted. Neither of these will define new
symbols.

5.8.4.4.3 Data block

The data block is used to define a new data type consisting of a set of data elements (a
record). The structure of the data block definition is:

DATA BLOCK <type-name>

 <data-type> <element-name> [; description]
 <data-type> <element-name> [; description]
 . . .

The new record is given the name <type-name>. After the keyword line a comment should
follow with an informal description of the new type.

Each data element in the new record is listed in order after the description. Each line defines
one new element of type <data-type> with name <element-name>. The different elements and
the declaration forms are shown in the below table. old-type references a previously defined
data type or a built-in type as listed in annex B.

Table 3 - Data type declaration formats

Form Description

old_type A single element of given type

[N] old_type An ordinary array of given type

[wtype:N] old_type Variable length array of given type

The N can be any integer. It specifies the (maximum) number of elements in the array. The
third form defines a variable length array. wtype may be one of the unsigned integer types
listed in annex B.

The built-in types are listed in annex B. These types should be referenced with the name given
in the left hand column.

5.8.4.4.4 Union

Unions are data objects that can be transmitted as one of several data elements of different
types and sizes. The specification of a union contains the possible elements that can be
transmitted in the place of this object The syntax of a union specification is shown below:

UNION <type-name> : <wtype>

 <data_type> <item> [; description]
 <data_type> <item> [; description]
 . . .

The union is given the name <type-name>. The wtype is an unsigned integral basic type that is
used to transmit the enumeration value of the union element actually transmitted. The
enumeration starts at one for the first line and increasing continuously. The value zero is
reserved for an empty union, i.e., no data transmitted.

Only one of the elements defined on the following lines will be transmitted. Each element must
be a basic type or a derived type (data block or interpretation).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 35 –

6 PISCES Foundation Specification (PFS)

6.1 Introduction

This clause gives an overview of the components of the PFS and defines the structure and
naming conventions.

6.2 Naming conventions

To simplify the reading and understanding of PFS class trees, the following naming convention
has been defined:

a) All PFS class names start with three upper case letters.
b) PAC is used for application classes.
c) PCC is used for interface component classes.
d) PIC is used for information classes.

In addition, the PFS will contain one standard data type file called “General”. Other data type
files are created as found necessary.

6.3 Application classes

6.3.1 Introduction

The PFS application classes are organised in a tree as shown in Figure 14. Each box
represents one application base class. The shaded boxes represents applications that are not
included in the companion standard source code, but which are included as examples of
possible derivations. The name of the application class is in bold font in the first line of text.
The component interfaces are listed underneath.

PACFullApplication
PCCApplicationInfo

PACLNA
PCCLNAStats

PACServerApp
PCCTagRead

PACApplication
PCCVersionCodes

PACConsole
PCCUserAuth(C)

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

PACNMEA
PCCNmeaIn

PACNMEARelay
PCCNmea

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

PACControl
PCCControl

Figure 14 - Application class tree

New tangible applications can be derived from any class in the tree, also those that are not leaf
nodes.

The tree defines a set of generally useful application classes as described in the following
clauses.

6.3.2 Application base class: PACApplication

All PFS compliant applications must as a minimum have version and manufacturer codes
available (PCCVersionCodes). These components of the PFS are described in Annex C (in
the PCSDL format).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 36 –

Two “simple” example applications are shown: A simple relay function for IEC 61162-1
telegrams (PACNMEARelay) and a simple control function (PACControl). The latter is
assumed to be some kind of simple control interface.

It is recommended that only very simple applications are derived from this base class. Most
applications should be derived from the managed application base class.

6.3.3 LNA MAU Application: PACLNA

There is an application class associated with the system’s LNA (PACLNA). This application is
implemented as a MAU that can look into some of the LNA’s management structures. This can
be ussed for application management, configuration and debugging. The minimal functionality
of this MAU is defined in Annex C.

6.3.4 Managed applications: PACFullApplication

There is also a more complex class of applications that as default support the inspection and
possible configuration of the interfaces and connection points implemented by the application
(PACFullApplication). The source code for the interfaces is included in Annex C.

This application class enables, together with the LNA MAU, the on-line creation of a
connectivity tree with detailed information about each connection point. This is an important
tool for system integration and system amnagement and debugging.

6.3.5 NMEA Application: PACNMEARelay

One example of a full application is the NMEA relay base class. This base class allows the
relay of IEC 61162-1 telegrams over the IEC 61162-4 protocol. This represents a simple way to
integrate parts 1, 2 and 4 of this standard. The source code is included in Annex E.

6.3.6 Console application: PACConsole

The console application base class provides a starting point for the cretaion of consoles that
shall cater to user centered HMI. In this standard, the base class is only provided with an
authentication client interface (PCCUserAuth). This is typically used to verify console position
and user authentity before any operation with side effects are allowed to be performed. The
source code is included in Annex C.

6.3.7 General Alarm and Monitoring Application: PACServerApp

A simple base class with a simple data base function for general data retrieval is implemented
in this application base class. A more detailed application tree is described in Annex D. This
base class, or at least parts of its component interfaces should be included in any application
that may present data to a higher level application.

These application classes are also useful as general gateways between any other sub-system
or bus and the IEC 61162-4 protocol.

7 Specification requirements for PCS compliant applications

7.1 Introduction and general documentation format

To enable the user to get a reasonable overview of an application’s functionality and the
relationship to and between interfaces, a set of documentation requirements has been
developed.

The application documentation shall consist of three main parts as described in the following
clauses.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 37 –

7.2 Function block

7.2.1 Function block graphical view

The documentation shall contain a graphical function block view. This view shall be structured
as indicated in Figure 15. Other graphical formats can be used, but the information entities
listed in the following shall as a minimum be included.

Physical Effects

Function Block

Commands

Output
variables

Input
variables

Events

Parameters Status

Figure 15 - Function block prototype

In the function block view, the application is drawn as a rectangle with certain inputs and
outputs. The inputs and outputs should be labelled with the corresponding connection point,
interface component or application interface dependent on wanted resolution. Only the inputs
and outputs that are most important for application function need to be included. The figure
shows those inputs and outputs that are normally included. These are discussed in the
following clauses.

7.2.2 Physical effects

Physical effects are interactions not representable in the IEC 61162-4 network. They shall be
drawn as double pointed arrows underneath the function block.

Physical effects are effects of interaction between the physical entities outside the control
system and the function block, transformed by e.g. sensors, actuators or HMI.

7.2.3 Input variables

Input variables shall be drawn as arrows pointing into the function block in the lower left corner.

These are information elements generated by other function blocks. They are read during the
execution of the function block’s algorithm and are necessary for the correct operation of the
function block.

7.2.4 Output variables

Output variables shall be drawn as arrows pointing out of the function block in the lower right
corner.

These are readable information elements generated as a result of execution of the function
block. These are typically input to other function blocks.

7.2.5 Events

Events shall be drawn as arrows pointing into the function block in the upper left corner.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 38 –

Events are commands or notifications that are delivered to the function block from other
function blocks and which cause the function block to perform some operation.

7.2.6 Commands

Commands shall be drawn as arrows pointing out of the function block in the upper right
corner.

Commands are generated by the function block as commands or notifications (including alarms
and warnings) to other function blocks to trigger some remote operation.

7.2.7 Status

Status shall be drawn as arrows pointing up from the function block in the upper right corner.

Status represents information items that can be made available to other function blocks that
are not yet known. This is typically interfaces to various forms of higher level decision support
systems.

7.2.8 Parameters

Parameters shall be drawn as arrows pointing down into the function block in the upper left
corner.

Parameters represents data that can be set in the function blocks to control the function
block’s operation. The operation of the function block shall not depdent on the continous
availability of these data. Typically this can be filter constants, set-points or alarm limits.

7.2.9 Indication of accept or connect functionality

It may be convenient to indicate in the figure what is defined as connect (client) and what is
defined as accept (server) type interfaces. Note that this is independent of an entry point acting
as input or output. The following conventions shall be observed:

a) A client entry point shall be labelled with an upper case ‘C’ near the rectangle.
b) A server entry point shall be labelled with an upper case ‘A’ near the rectangle.
c) No label is legal and does not carry any particular meaning.

7.3 Functional description

The documentation shall contain a section that describes the functionality of the application.
This section shall relate the various inputs and outputs to the overall functionality.

The level of detail and the actual mechanisms employed to describe the functionality is left to
the author. As a general rule, the description should allow a reader to understand what the
application does and how the various inputs and outputs can be used to deploy the application
in an integrated system.

7.4 Companion standard descriptions

The third part of the documentation is a detailed description of all inputs and outputs in the
form of PCSDL documents. Base classes that are used in derivations and which are taken from
official versions of this standard, need not be included in the listings.

Interfaces that are only used for internal purposes and which are not meant for public use may
also be deleted from the listing providing that these interfaces have no safety related impacts
on the application or in the system the application shall operate in.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 39 –

Annex A
(Normative)

Defined keywords

The following table shows the keywords reserved in the PISCES companion standard definition
documents.

Keyword Description

ACCEPT Define an accept-type interface

ANONYMOUS BROADCAST Define an ABC connection point

APPLICATION Define a new application specification

ATTRIBUTES Declare attributes of an information specification

AUTHENTICATION Specify need for user authentication

BROADCAST SUBSCRIBE A data object function type

CLIENTS Specify maximum number of clients for an interface

COMPONENT Syntactic sugar

CONNECT Define a connect-type interface

CONNECTION POINTS Define a set of connection points

CONSTANT Define a constant data item

DATA BLOCK Define a new data aggregate type

DATA TYPES Define new data types

DATE Followed by date of last modification

DERIVED Specify the base specification of a PCS specification

FROM Syntactic sugar

FUNCTION A data object function type

GLOBAL Define global scope for an identifier

INFORMATION Define a new information specification

INDIVIDUAL SUBSCRIBE Define an individual subscribe connection point

INPUT Define the data object's input record

INTERFACE Define a new interface specification

INTERFACES Define application interfaces

INTERPRETATION Define an interpretation of a data item

IS Syntactic sugar

LOCAL Define local scope for the following data types

MANUFACTURER Specify manufacturer of an application

MAX MESSAGE RATE Specify maximum message rate of an interface

MODEL Specify model of an application

NAMED Syntactic sugar

NONACKED WRITE A data object function type

OF Syntactic sugar

ON Syntactic sugar

OUTPUT Define the data object's output record

PASSWORD Specify password protection for a server interface

PRIORITY Specify the priority of a CONNECT interface

READ A data object function type

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 40 –

Keyword Description

REFERENCES Heads “included files“ section

REQUIRED DOCUMENTATION Additional required documentation for an interface

RESPONSIBLE Responsible author of a specification

SUBSCRIBE A data object function type

TRANSACTION QUEUE Specification of load limitation for server

UNION Specify a union data type

USAGE Heads a description of the usage of a specification

VERSION Followed by version code of the specification

WRITE A data object function type

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 41 –

Annex B
(Normative)

Basic PISCES Data Types

The following basic data types are supported by PISCES. The PISCES protocol guarantees to
transmit any aggregates of these types between application units with no loss in precision or
value.

Type Description

bool_m 1 bit Boolean

char8_m 8 bit character

char16_m 16 bit character

word8_m 8 bit unsigned integer

wordl6_m 16 bit unsigned integer

word32_m 32 bit unsigned integer

word64_m 64 bit unsigned integer

int8_m 8 bit 2's complement integer

intl6_m 16 bit 2's complement integer

int32_m 32 bit 2's complement integer

int64_m 64 bit 2's complement integer

float32_m 32 bit floating point

float64_m 64 bit floating point

Refer to a more detailed description and a formal definition of representation in [IEC 61162-
401].

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 42 –

Annex C
(Normative)

General applications companion standards

C.1 Introduction and general principles

This annex describes interface components and applications for basic system management
functions. Each application shall belong to one of the super-classes:

a) PACSimpleApplication: Shall provide mechanisms for accessing simple information
about the application (version codes, manufacturer and model information).

b) PACFullApplication: Shall provide mechanisms for accessing information about the
interfaces and connection points provided by the application.

c) PACLNA: Special application associated with LNA.

Other applications are defined to be not conformant with the standard.

This annex also contains an authentication interface that can be used by applications that
require operator or workstation authentication.

C.2 Functionality overview

C.2.1 General data definitions

The data type General provides general data definitions for all applications conformant to this
standard.

C.2.2 Version codes

The interface PCCSimpleApplication provides version codes in standard three number
format. Version codes for application program and protocol shall be provided.

C.2.3 Manufacturer and model identification

These are text strings that identify the manufacturer and the model. They should be the official
name of the respective entities.

C.2.4 Interface and MCP information.

The PCCFullApplication interface provides additional information that allows a
management client to inspect all interfaces and MCPs.

C.2.5 Authentication

Authentication is application specific in that different servers have different requirements for
authentication. The standard provides a general interface to do authentication and this,
together with the session codes, can be used to make sure that the identity of a requesting
client is that which one expects.

C.2.6 File overview

The following table lists the interfaces and applications are contained in this annex.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 43 –

Table 4 - Application related CS components

Component Description File

General General data types general.mcs

PACSimpleApplication Simple application skeleton appsimp.mcs

PACFullApplication Full application skeleton appfull.mcs

PCCVersionCodes Interface for version codes version.mcs

PCCApplicationInfo Interface for application information appinfo.mcs

UserAuth User authentication data types authd.mcs

PCCUserAuth User authentication auth.mcs

LnaMau LNA data types definition lnadata.mcs

LnaMauIf LNA MAU interface lnaif.mcs

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 44 –

C.2.7 Data types General
DATA TYPES General
 * This module defines a set of general data-types. They are all defined as
global.

 * Revision history:
 990831 1.1 Second official release

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

REFERENCES
 none

;---
USAGE
 * This file contains general definitions for PFS

GLOBAL

;---
INTERPRETATION FieldOk OF bool_m
 * Each bit indicates whether the corresponding field in a block is
 valid. Valid means interpretable, i.e., a null-terminated string
 can be flagged as valid A zero length variable length array can
 alos be valid. Fields are counted from the top of the data block
 definition (as index zero) and down (increasing index). The field
 is valid if the corresponding bit is TRUE (1).

;---
INTERPRETATION BlockOk OF bool_m
 * Value indicates whether data block is valid or not.

 FALSE ; Block is illegal
 TRUE ; Block is ok

;---
DATA BLOCK Time
 * A representation of relative time. Note that the representation
 cannot accomodate longer time differences than approximately 136
 years.

 word32_m sec
 word32_m usec ; Micro-seconds fraction of above

;---
INTERPRETATION GlobalTime OF Time
 * GlobalTime contains number of atom clock seconds and micro-seconds
 since midnight 1. January 1970 UTC, *excluding* leap
 seconds. This is compatible with POSIX time representation (for
 use in, e.g., ctime or localtime functions). This time
 measurement has an offset to UTC time that is changed for each
 (negative or positive) leap second.

 * Note 2: The constant UTCOFFSET_JAN1999 can be used as an
 approximation to the offset to UTC time. One should keep in mind
 that there may be a second or so difference between the MiTS time
 as specified by the system server and real UTC time. This should
 be no problem as long as this is consistent during a voyage.

 * Note 3: The GPS satelite or a radio or modem based time standard
 server can be used to update the offset count.

 * Note 4: When using POIX time conversion functions, one should
 check if the leap second count is taken into consideration (it
 should not be) and if the second count is signed or not. A signed
 second count will cause problems around year 2038 when a signed
 seconds count wrap around to negative.

 * Note 5: The second counter wraps around sometime in the year
 2107. Use of the time structure should take care to do modulo
 arithmetic correctly.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 45 –

 sec ; Seconds since 1970-01-01 00:00:00 UTC
 usec ; Micro-seconds fraction of above

CONSTANT UTCOFFSET_JAN1999 IS 22
 * The last leap second (at date of writing) occured at the start of
 January 1999. The total offset between POSIX time and UTC was after
 that event 22 seconds. A complete list of leap seconds can be
 found below. The list is adapted from a file located at
 ftp://maia.usno.navy.mil/ser7/leapsec.dat.

 * 1972 JAN 1
 * 1972 JUL 1
 * 1973 JAN 1
 * 1974 JAN 1
 * 1975 JAN 1
 * 1976 JAN 1
 * 1977 JAN 1
 * 1978 JAN 1
 * 1979 JAN 1
 * 1980 JAN 1
 * 1981 JUL 1
 * 1982 JUL 1
 * 1983 JUL 1
 * 1985 JUL 1
 * 1988 JAN 1
 * 1990 JAN 1
 * 1991 JAN 1
 * 1992 JUL 1
 * 1993 JUL 1
 * 1994 JUL 1
 * 1996 JAN 1
 * 1997 JUL 1
 * 1999 JAN 1

;---
DATA BLOCK Version
 * Version codes generally used in this protocol. An increment in major
 number indicates a specification (protocol) change that may render
 older versions incompatible with newer. Downward compatibility may
 be supported but shall not be relied on. The value zero for major
 represent a test version with unknown relationship to official
 versions. An increment in minor number represents some form of
 correction or minor adjustment that retains upwards specification
 compatibility. An increment in release number indicates software
 fixes with possible changes in functionality only to correct
 previous errors. The date represents the compilation date and time
 for the software implementing the version.

 word16_m major
 word16_m minor
 word16_m release
 GlobalTime date

;---
INTERPRETATION EngineeringUnit OF word16_m
 * Specification of scalar dimension. Most units are based on SI, but
 some special considerations have been made to naval units (knots,
 nautical miles and angualar measures).

 * Note: Different storage classes can use the same engineering unit,
 e.g., a time can be represented in a float or an integer. It is
 usually necessary to know both storage class and engineering unit
 to interpret a number.

 * EU_NAVDIRECTION is used both for positions (E/W or N/S) or compass
 headings. The context defines how it is used.

 0 = EU_OTHER ; other (use description)
 1 = EU_UNKNOWN ; not known
 ;
 2 = EU_COUNT ; number - dimension-less
 3 = EU_RATIO ; ratio - dimension-less
 ;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 46 –

 4 = EU_TEXT ; No unit - text string
 ;
 10 = EU_LENGTH ; m (linear measure)
 12 = EU_AREA ; m**2 (area)
 13 = EU_VOLUME ; m**3 (volume)
 14 = EU_NAVDISTANCE ; nautical miles - 1852 m (navigational length)
 ;
 20 = EU_ANGLE ; radians (angular measure)
 21 = EU_NAVDIRECTION ; degrees, positive clockwise (angualar
 ; measure, normally N is zero).
 22 = EU_POSITION ; tuple: first is degrees N positive (S neg),
 ; degrees E positive (W neg) (position in
 ; latitude, longitude).
 ;
 30 = EU_VELOCITY ; m/s (linear velocity)
 31 = EU_NAVVELOCITY ; knots - nm/h (navigational velocity)
 32 = EU_ANGVELOCITY ; radians/s (angular velocity)
 ;
 40 = EU_ACCEL ; m/s**2 (linear acceleration)
 41 = EU_ANGACCEL ; radians/s**2 (angular acceleration)
 ;
 50 = EU_TIME ; s (time)
 51 = EU_FREQUENCY ; Hz (frequency)
 ;
 60 = EU_MASS ; kg (mass)
 61 = EU_DENSITY ; kg/m**3 (density)
 62 = EU_MASSFLOW ; kg/s (mass flow)
 ;
 70 = EU_FORCE ; N (Force)
 71 = EU_TORQUE ; Nm (Torque)
 72 = EU_PRESSURE ; Pa or N/m (Pressure)
 ;
 80 = EU_ENERGY ; J (Energy)
 81 = EU_POWER ; W (Power)
 82 = EU_HEATFLOW ; J/m**2 (Heatflow)
 83 = EU_TEMP ; Degrees C (temperature)
 84 = EU_ABSTEMP ; Degrees K (absolute temperature)
 ;
 90 = EU_DYNVISC ; N/m * s (Dynamic viscosity)
 91 = EU_KINVISC ; m**2/s (Kinematic viscosity)
 ;
 100 = EU_RESISTANCE ; Ohm (Resistance)
 101 = EU_CURRENT ; A (Current)
 102 = EU_VOLTAGE ; V (Voltage)
 ;
 1000 = EU_RAW ; Raw byte stream (file)
 1001 = EU_JAVA ; Java text code
 1002 = EU_TCLTK ; TCL/TK code
 1003 = EU_EXPRESS ; EXPRESS text code
 ;
 10000 = EU_FREE ; User defined from this value and up

;---
INTERPRETATION LocationCode OF word32_m
 * Location codes. Unused codes are user defined. For future expansion
 these codes should start at USERLOCATIONS.

 0 = LC_EVERYWHERE
 ;
 100000 = LC_USERLOCATIONS ; Above and including this number

;---
INTERPRETATION TPnet OF word16_m
 * Code for various T-profile network (IEC 61162-420).

 0 = TPN_ANYADR_USER ; User specified
 1 = TPN_MAUADR_IPC ; MAU-LNA system specific IPC
 2 = TPN_MAUADR_TCP ; MAU-LNA over WAN TCP
 129 = TPN_LNADR_IPV4R ; IPV4 Std. LNA-LNA redundant
 130 = TPN_LNADR_IPV4RE ; IPV4 Extended LNA-LNA redundant
 131 = TPN_MMADR_IPV4R ; IPV4 Std. MAU-MAU redundant
 132 = TPN_MMADR_IPV4RE ; IPV4 Extended MAU-MAU redundant
 140 = TPN_LNADR_IPV4 ; IPV4 Std. LNA-LNA non-redundant
 141 = TPN_LNADR_IPV4E ; IPV4 Extended LNA-LNA non-redundant
 142 = TPN_MMADR_IPV4 ; IPV4 Std. MAU-MAU non-redundant

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 47 –

 143 = TPN_MMADR_IPV4E ; IPV4 Extended MAU-MAU non-redundant

;---
DATA BLOCK address_m
 * Address of a stream interface. This consists of a T-profile type and a
 T-profile dependent address block. The currently defined address blocks are:
 TPN_ANYADR_USER: User defined, any length
 TPN_MAUADR_IPC: System dependent code, e.g., process id
 TPN_MAUADR_TCP: Void, zero length
 TPN_LNADR_IPV4R: Void, zero length
 TPN_LNADR_IPV4RE: 8 octets, two word32_m Internet addresses
 TPN_MMADR_IPV4R: Void, zero length
 TPN_MMADR_IPV4RE: 8 octets, 2 word32_m
 TPN_LNADR_IPV4: Void, zero length
 TPN_LNADR_IPV4E: 4 octets: word32_m
 TPN_MMADR_IPV4: Void, zero length
 TPN_MMADR_IPV4E: 4 octets: word32_m

 TPnet tProfile ; T-profile in use
 [word8_m:48]word8_m tAddress ; The address

;---
INTERPRETATION TPService IS word32_m
 * A TP network service class. Values defined by T-profile.

 0 = TPNS_UNKNOWN

;---
INTERPRETATION TPSInstance IS word32_m
 * A TP network service class instance. Values depedent on service. For
 MAU-MAU stream over Internet, the value is TCP port number.

 0 = TPNSC_NONE

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 48 –

C.2.8 Application PACSimpleApplication
APPLICATION PACSimpleApplication

 * This application contains the general framework for the creation
 of a minimum PISCES application.

 * Revision history :
 1999-08-31 1.1 ojr, SINTEF: For IEC
 1998-12-01 1, ojr : First

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES

 INTERFACE PCCVersionCodes

;--
USAGE

 * Minimum required functionality for PFS application.

;--
INTERFACES

 ACCEPT Application

 INTERFACE COMPONENT PCCVersionCodes

C.2.9 Application PACFullApplication
APPLICATION PACFullApplication DERIVED FROM PACSimpleApplication

 * This application contains the general framework for the creation
 of a complete PISCES application.

 * Revision history :
 1999-08-31 1.1: For IEC, ojr, SINTEF
 1998-12-01 1, ojr : First

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES

 INTERFACE PCCApplicationInfo

;--
USAGE

 * Minimum functionality for full application.

;--
INTERFACES

 ACCEPT Application

 INTERFACE COMPONENT PCCApplicationInfo

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 49 –

C.2.10 Interface PCCVersionCodes
INTERFACE PCCVersionCodes
 * This interface gives access to basic information about the
 application.

 * Revision history :
 1999-08-31 1.1, ojr: For IEC
 1998-12-01 1, ojr: Change name
 1998-08-26 C, ojr: Only version codes - rest in application
 1998-08-13 B, ojr : Modified version codes, operating with
 interface components, connection point numbers. Use general data
 types as reference.
 1998-07-23 A, smt : created

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES
 General

;--
USAGE
 This interface is for general use by all applications
 compliant to the PISCES companion standard. It is also
 contained in the application base class defined within the
 PISCES foundation classes

 *NOTE: All variable length strings are length encoded and not null
 terminated.

;--
DATA TYPES

 ;---
 INTERPRETATION PFClass OF word16_m
 * PFC application class code.

 0 = PFC_NONE ; Special class
 1 = PFC_LNA ; LNA MAU
 2 = PFC_FULL ; Full server
 3 = PFC_SIMPLE ; Simple interface

;--
CONNECTION POINTS

 ;--
 FUNCTION GetApplicationInfo
 * This connection point returns general information about
 the application concerned. This includes header information (the
 name of the responsible author, manufacturer and type of
 application) as well as information about the interfaces.

 * Post condition: Returns number of interfaces supported in
 addition to this one. I.e., zero is in principle a legal
 number. The number specifies interface components. Interface
 components are numbered from zero (this one) to
 interfaces.

 INPUT
 none

 OUTPUT
 [word16_m:64]char8_m manufacturer ;manufacturer
 [word16_m:64]char8_m model ;model (type)
 int32_m interfaces ;number of additional interfaces
 PFClass class ;PFC type
 Version appVersion ;Application revision
 Version protoVersion ;Protocol revision

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 50 –

C.2.11 Interface PCCApplicationInfo
INTERFACE PCCApplicationInfo
 * This interface gives access to information about
 applications (general attributes), application interfaces
 and their connection points

 * Revision history :
 1999-08-31, 1.1, ojr, For IEC
 1998-12-01 1, ojr : Changed name
 1998-08-26 C, ojr : Removed basic version codes to version.mcs
 1998-08-13 B, ojr : Modified version codes, operating with
 interface components, connection point numbers. Use general daat
 types as reference.
 1998-07-23 A, smt : created

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES
 General

;--
USAGE
 This interface is for general use by all applications
 compliant to the PISCES companion standard. It is also
 contained in the application base class defined within the
 PISCES foundation classes

 *NOTE: All variable length strings are length encoded and not null
 terminated.

;--
CONNECTION POINTS

 ;--
 FUNCTION GetInterfaceInfo
 * This command is used to retrieve detailed information
 about one selected interface component in the application
 concerned.

 * Precondition :
 Input parameter interface (see below) must be a number of an
 interface, numbered from zero (this interface itself) to
 interfaces (from GetApplicationInfo).

 * Postcondition :
 Information about the interface is retrieved. The data is valid
 if the flag isOk is set to TRUE. Please note that the following
 fields are only valid for an accept interface (i. e. type == 1):
 - auth_flag
 - numb_clients
 - password
 The field priority is only valid for a connect interface
 (i.e. type == 0).

 * Number of connection points are the total number of interfaces,

 * Interface number is negative for illegal interfaces:
 -1: No such interface
 -2: No data on interface

 INPUT
 int32_m interface

 OUTPUT
 int32_m interface ; Interface number, as input
 [word16_m:32]char8_m appName ; Name of interface
 [word16_m:32]char8_m className ; Name of interface class
 bool_m isAccept ; FALSE: connect / TRUE: accept
 bool_m hasAuth ; authentication necessary

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 51 –

 bool_m needPassword ;interface password protected (TRUE/FALSE)
 word16_m acceptClients ;max. number of clients
 word16_m max_mess_rate ;maximum message rate possible
 word16_m min_mess_rate ;minimum message rate allowed
 word16_m priority ;LOW, MEDIUM or HIGH
 int32_m noCPs ;Number of connection points
 Version vNo ;Version information

 ;--
 FUNCTION GetCPInfo
 * This command is used to retrieve detailed information
 about one selected connection point.

 * Precondition :
 Input parameter interface (see below) must be a valid code for an
 existing interface component. conn_pt be a valid code for a
 connection point belonging to the interface.

 * Postcondition :
 Information about the connection point conn_pt is retrieved. The
 data is valid if returned interface and conn_pt is
 non-negative. Negative values for one or both are: -1: No such
 entry for this interface/conn_pt -2: No data available on this
 interface/conn_pt

 INPUT
 int32_m interface
 int32_m conn_pt

 OUTPUT
 int32_m interface
 int32_m conn_pt
 [word16_m:1950]char8_m format ;Format string
 [word16_m:32]char8_m name ;Name of CP

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 52 –

C.2.12 Data types UserAuth
DATA TYPES UserAuth
 * These data types are related to user authentication.

 * Revision history :
 1999-08-31, 1.1, ojr, For IEC
 1998-12-01 1, ojr : First

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES

 DATA TYPES General

;--
GLOBAL

 ;--
 INTERPRETATION UserGroup OF int32_m
 * Codes for user groups.

 0 = UG_CAPTAIN
 1 = UG_CHIEF
 2 = UG_DECKOFFICER
 3 = UG_OOW ; Officer On Watch
 4 = UG_OTHERENGINEER ; not chief
 ;
 1000 = UG_USER ; user defined from here

 ;--
 INTERPRETATION ConsoleGroup OF int32_m
 * Codes for operating consoles (from IMO A.830(19) and other)

 0 = CG_OTHER ; Not defined location
 1 = CG_BRIDGE ; Navigation bridge
 2 = CG_MACHINERY ; Machinery control room
 3 = CG_FIRE ; Central fire control station
 4 = CG_LOCAL ; At location of equipment being monitored
 5 = CG_ENGINEER ; Engineer's accomodation
 ;
 6 = CG_BRIDGEWINGP ; Navigation position port
 7 = CG_BRIDGEWINGS ; Navigation position starboard
 8 = CG_BOWCONTROL ; Navigation and DP position
 9 = CG_BOWDOOR ; For bow door
 ;
 1000 = CG_USER ; User defined position from this code

 ;--
 INTERPRETATION UaStatus of int32_m
 * Return status for request to authenticate.

 0 = US_ALLOWED
 1 = US_WRONGUSER
 2 = US_WRONGCONSOLE
 3 = US_WRONGSPECIFICCONSOLE
 4 = US_WRONGSPECIFICUSER
 5 = US_WRONGPASSWORD
 6 = US_UNKNOWN ; Other unknown error
 ;
 1000 = US_OTHER ; Other specific errors

 ;--
 INTERPRETATION UaCode of [32]bool_m
 * The user authentication code. Increasing codes give increasing
 levels of authorities. Coding is dependent on controlled
 application May be a bit-map?

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 53 –

 0 = UA_NONE ; No secure operation is allowed when all bits zero
 1 = UA_READ ; Allowed to read data and attributes
 2 = UA_WRITE ; Allowed to write some data
 3 = UA_WATTR ; Allowed to write and set some attributes
 4 = UA_ALARM ; Allowed to acknowledge some alarms
 ;
 0xffffffff = UA_ALL ; All operations allowed when all bits set

 ;--
 INTERPRETATION CommandCode OF int32_m
 * Codes used in the function calls.

 0 = CC_NOOP ; No operation
 1 = CC_REQCONSOLE ; Request transfer of console to remote
 2 = CC_SETCONSOLE ; Force to be set as console
 3 = CC_ACKTRANSFER ; Acknowledge transfer
 4 = CC_WHATCONSOLE ; What is console
 ;
 1000 = CC_USER ; Other commands

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 54 –

C.2.13 Interface PCCUserAuth
INTERFACE PCCUserAuth
 * This interface is used for user authentication. A client asks a
 server for authentication codes based on a passwords, a user code
 the code for the controlling function and the function to control.

 * Revision history :
 1999-08-31 1.1, ojr, For IEC
 1998-12-01 1, ojr : Removed data types, changed name
 1998-08-26 C, ojr : Added console change and timeout on auth
 1998-07-23 B, ojr : modified
 1998-07-23 A, smt : created

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REQUIRED DOCUMENTATION

 PASSWORDS ; It must be documented how passwords are configured in
 ; both client and server

;--
REFERENCES

 DATA TYPES General
 DATA TYPES UserAuth

;--
CONNECTION POINTS

 ;--
 FUNCTION Authenticate
 * This connection point is used to identify a user and returns an
 authentication code. The protocol will ensure that it is
 possible to identify the client MAU between connection points and
 interfaces.

 * Precondition: Input user and console codes and password. Input
 optionally a specific user and console code. This may be
 required by some applications. A new request terminates
 automatically any previous authorisations.

 * Postcondition: Authorisation status. The requesting MAu will
 automatically have an authorisation level corresponding to user
 and console. This will be used where applicable on other
 requests to the server MAU. The time field gives optionally a
 time to live for the authorisation (zero is infinite). A new
 request must be sent before this time to validate the
 authorisation. The authorisation code and descriptive string
 specifies allowed operations.

 INPUT
 UserGroup user ; What user code
 ConsoleGroup console ; What control position
 [8]char8_m spConsole ; Optional specific console code or null
 [8]char8_m spUser ; Optional specific user code or null
 [8]char8_m password ; Password

 OUTPUT
 UaStatus status ; return code
 UaCode authCode ; authorisation code
 Time ttl ; Time that authorisation is valis
 int32_m console ; Console number
 [32]char8_m authDesc ; Optional descriptive string

 ;--
 SUBSCRIBE IsControl
 * This subscription point informs all connected consoles about
 current status.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 55 –

 * Precondition: The listeners console code must be established by
 doing an authorisation request. If not, the lsitner should
 assume zero as this code never is used.

 * Postcondition: The command code specifies necessary actions:
 REQCONSOLE and nextConsole is self: Acknowledge take over
 SETCONSOLE: Register new console in command, use provided data.
 WHATCONSOLE: Information about new or changed console
 configuration. Use provided data.
 Other: ignore
 * The user, console, spConsole and spUser describes the
 attributes of the new console when SET, REQ or WHAT
 CONSOLE. Invalid else.

 OUTPUT
 CommandCode command ; Command to consoles
 int32_m inConsole ; Current console in command
 int32_m nextConsole ; Next to be console in command
 UserGroup user ; What user code
 ConsoleGroup console ; What control position
 [8]char8_m spConsole ; Optional specific console code or null
 [8]char8_m spUser ; Optional specific user code or null

 ;--
 FUNCTION SetControl
 * This connection point does one of several things:
 - Inquire about current console in command
 - Ask for transfer to another console
 - Ask for forced transfer to this console
 - Acknowledge transfer to this console
 by the character string new_console. It returns the name of
 the workstation previously controlling the process as well as a
 flag indicating whether the assignment has been executed
 successfully.

 * Precondition: Authorisation must have been established. A console
 code for own console will be returned through that. One can ask
 for transfer to own or to another. One can also ask for console
 in command (do not usually require authorisation).

 INPUT
 ControlCommand command ; Operation to be performed
 int32_m nextConsole ; Myself or transfer to

 OUTPUT
 ControlStatus status
 int32_m nextConsole ; Requested console number

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 56 –

C.2.14 Data types LnaMau
DATA TYPES LnaMau
 * This module defines a set of general data-types to be used in PISCES
 companion standard specifications for the LNA-MAU.

 * Revision history:
 1999-08-31 V1.1 Some changes in version and address (ojr, SINTEF)
 1998-11-30 V0.1 Transcription to PISCES CS format (jhe - ISSUS)

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;---
REFERENCES
 none

;---
GLOBAL

;CONSTANTS:

CONSTANT CONST_ELEM_CPLIST IS 12
 ;The number of elements in a connection point list.

CONSTANT CONST_ELEM_LNALIST IS 40
 ;The number of elements in a lna list.

CONSTANT CONST_ELEM_MAULIST IS 45
 ;The number of elements in a mau list.

CONSTANT CONST_FORMAT_LENGTH IS 1500
 ;The max. string length of a format string.

CONSTANT CONST_CPNAME_LENGTH IS 32
 ;The max. string length of a connection point name.

CONSTANT CONST_IFNAME_LENGTH IS 32
 ;The max. string length of an interface name.

CONSTANT CONST_LNANAME_LENGTH IS 32
 ;The max. string length of a lna name.

CONSTANT CONST_MAUNAME_LENGTH IS 32
 ;The max. string length of a mau name.

;---
;INTERPRETATIONS:

INTERPRETATION CPStatus OF word8_m
 ;The definition of type CPStatus. Variables of this type may have
 ;the following values:

 0 = undefined
 1 = C_FIND_MAU
 2 = C_FIND_MC
 3 = C_OPEN

INTERPRETATION CPType OF word8_m
 * This variable contains the service type of the connection point
 (eg. SUBSCRIBE, READ, WRITE)

 0 = undefined
 1 = READ
 2 = WRITE
 3 = FUNCTION
 4 = SUBSCRIBE
 5 = NONACKED_WRITE
 6 = BROADCAST
 7 = INDIVIDUAL SUBSCRIBE

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 57 –

;---
;DATA BLOCKS:

DATA BLOCK LnaStatus
 ;The data block LnaStatus has the following elements:

 address_m address ; The network address of LNA.
 word32_m networkNode ; Node number of ditto
 int8_m status
 * The status of the LNA or CNA.
 Possible values:
 0 = undefined/ not running
 1 = LNA_GOT_STATUS
 2 = LNA_WAIT_FOR_STATUS
 3 = LNA_REGISTERING
 4 = LNA_REGISTERED

 Version versionNo
 ; Software version number and compilation date.

DATA BLOCK MauInfo
 ;The data block MauInfo has the following elements:

 [CONST_MAUNAME_LENGTH]char8_m mauname
 ; The MAU name.

 int8_m status
 * The status of the MAU.
 Possible values:
 0 = undefined status
 1 = ACTIVE

 word32_m numberConnectCPs
 ; Number of established CONNECT connection points of this MAU.

 word32_m numberAcceptCPs
 ; Number of established ACCEPT connection points of this MAU.

DATA BLOCK ACPInfo
 ;The data block ACPInfo has the following elements:

 [CONST_CPNAME_LENGTH]char8_m cpname
 ; The name of the connection point.

 [CONST_IFNAME_LENGTH]char8_m ifname
 ; The name of the interface of this connection point.

 CPType cpType
 * This variable contains the service type of the connection point
 (eg. SUBSCRIBE, READ, WRITE).

DATA BLOCK CCPInfo
 ;The data block CCPInfo has the following elements:

 [CONST_CPNAME_LENGTH]char8_m cpname
 ; The name of the connection point.

 [CONST_IFNAME_LENGTH]char8_m ifname
 ; The name of the interface of this connection point.

 [CONST_MAUNAME_LENGTH]char8_m rmau
 ; The name of the remote (server) MAU.

 CPStatus status
 ; The status of the connection point.

 CPType cpType
 * This variable contains the service type of the connection point
 (eg. SUBSCRIBE, READ, WRITE).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 58 –

C.2.15 Interface PCCLNAStats
INTERFACE PCCLNAStats
 * This is the LNA-MAU interface.

 * Revision history
 1998-12-01: First, jhe, ISSUS

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;---

REFERENCES
 DATA TYPES LnaMau

USAGE
 This Companion Standard Description provides the interface to the
 LNA-MAU. It is supposed to be a part of each LNA.

REQUIRED DOCUMENTATION
 LnaMau

;---

CONNECTION POINTS

READ GetStatus
 * This connection point shall be used to retrieve status information
 about the LNA from the LNA-MAU.

OUTPUT
 LnaStatus lnaStatus
 ; The status of the LNA.

 word32_m numberOfLocalMAUs
 ; Number of local MAUs.

 word32_m numberOfRemoteLNAs
 ; Number of remote LNAs.

;---
FUNCTION GetMcpList
 * This connection point shall be used to retrieve a list of MCPs of a
 given MAU. More than one list may exist. Each list can be addressed
 by the listNumber attribute.

INPUT
 word32_m listNumber
 ; The number of the requested list (zero-based).

 [CONST_MAUNAME_LENGTH]char8_m mauname
 ; The MAU name.

OUTPUT
 [word32_m:CONST_ELEM_CPLIST]ACPInfo acceptList
 ; The list of accept CPs.

 [word32_m:CONST_ELEM_CPLIST]CCPInfo connectList
 ; The list of connect CPs.

 word32_m totalNumberOfLists
 ; The total number of lists currently to be retrieved.

 word32_m listNumber
 ; The number of this list (zero-based).

 word32_m listReference
 * The current reference number. The reference is changed each time
 the status or number of connection points have changed.
 Use this variable to identify changes while retrieving

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 59 –

 a MCP list.

;---
FUNCTION GetMauList
 * This connection point shall be used to retrieve a list of MAUs attached
 to this LNA. More than one list may exist. Each list can be addressed
 by the listNumber attribute.

INPUT
 word32_m listNumber
 ; The number of the requested list (zero-based).

OUTPUT
 [word32_m:CONST_ELEM_MAULIST]MauInfo list
 ; The list of MAUs.

 word32_m totalNumberOfLists
 ; The total number of lists currently to be retrieved.

 word32_m listNumber
 ; The number of this list (zero-based).

 word32_m listReference
 * The current reference number. The reference is changed each time
 the status or number of connection points have changed.
 Use this variable to identify changes while retrieving
 a MAU list.

;---
FUNCTION GetLnaList
 * This connection point shall be used to retrieve a list of remote LNAs known
 to this LNA. More than one list may exist. Each list can be addressed
 by the listNumber attribute.

INPUT
 word32_m listNumber
 ; The number of the requested list (zero-based).

OUTPUT
 [word32_m:CONST_ELEM_LNALIST]LnaInfo list
 ;The list of LNAs.

 word32_m totalNumberOfLists
 ; The total number of lists currently to be retrieved.

 word32_m listNumber
 ; The number of this list (zero-based).

 word32_m listReference
 * The current reference number. The reference is changed each time
 the status or number of connection points have changed.
 Use this variable to identify changes while retrieving
 a LNA list.

;---
SUBSCRIBE SubscribeToLnaChanges
 * This subscribe connection point can be used to get notified in case of a
 change of the status or one of the lists of the LNA.

OUTPUT
 int8_m lnaCnaStatusChanged
 * The variable may have the following values:
 0 = unchanged
 1 = The status of the LNA or CNA has changed (use GetStatus)

 int8_m mauListChanged
 * The variable may have the following values:
 0 = unchanged
 1 = The MAU list has changed (use GetMauList)

 word32_m numberOfChangedMauList
 * The number of the first MAU list that has changed. Only valid if

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 60 –

 mauListChanged is not "unchanged".

 int8_m lnaListChanged
 * The variable may have the following values:
 0 = unchanged
 1 = The LNA list has changed (use GetLnaList)

 word32_m numberOfChangedLnaList
 * The number of the first LNA list that has changed. Only valid if
 lnaListChanged is not "unchanged".

 int8_m mcpListChanged
 * The variable may have the following values:
 0 = unchanged
 1 = The MCP list has changed (use GetMcpList)

 word32_m numberOfChangedMcpList
 * The number of the first MCP list that has changed. Only valid if
 mcpListChanged is not "unchanged".

 [CONST_MAUNAME_LENGTH]char8_m mauChanged
 ; The name of the MAU which MCP has changed.

;---
FUNCTION GetFormatString
 * This connection point may be used to retrieve the format string
 of a particular MCP of a MAU from the LNA-MAU.

INPUT
 [CONST_MAUNAME_LENGTH]char8_m mauname
 ; The name of the MAU to be addressed.

 [CONST_CPNAME_LENGTH]char8_m cpname
 ; The name of the connection point to be addressed.

 bool_m acceptFlag
 * This flag indicates weather the MCP is of
 an ACCEPT or CONNECT type.
 FALSE = CONNECT
 TRUE = CONNECT

 CPType cpType
 * This variable contains the service type of the connection point
 (eg. SUBSCRIBE, READ, WRITE).

OUTPUT

 [CONST_FORMAT_LENGTH]char8_m format
 ; The format string of this connection point.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 61 –

Annex D
(Normative)

General alarm and monitoring companion standards

D.1 Introduction and general principles

This document contains the companion standards for a general interface to automation and
alarm systems. The standards are also useful in the context of navigation, where they can be
used for interfaces to alarm system or to higher level decision support systems.

These companion standards are based on the manipulation of information based on tag
names. The tag name is an identifier for the information item. The term tag will in the following
be used synonymously with information item. Each tag is associated with a value, possibly an
alarm state and a set of attributes.

The companion standards provide the following general mechanisms:

a) Search for tags on a specific MAU.
b) Search for tags on the network (via anonymous broadcast).
c) Reading and writing tag values.
d) Reading and writing tag attribute values.
e) Subscribing on values from individual or set of tags.
f) Mechanisms for subscribing to and acknowledging alarms.

Access to tags can optionally be associated with user or workstation authentication. This is
normally necessary for alarm acknowledgement and value writing.

The companion standards described here are application independent. The set of tag names
will determine what application is associated with a certain MAU.

D.2 Definitions

Tag name: A text string identifying an information item. Several tag names can reference the
same information item.

Tag number: A code referencing one information item. There is a one to one relationship
between tag number and the information item.

Yard tag: A tag name (usually) assigned by the yard. The yard tag is normally associated with a
physical device, e.g., a temperature transmitter, and can in some cases also be associated to a
representative information item (tag number), e.g., the temperature measurement.

D.3 Functionality overview

D.3.1 Companion standard for tag based monitoring and alarm system

The general idea is that all PISCES applications of a certain class should supply one uniform
service to other PISCES clients that allows the clients to read and write data from or to the
server in a standard way. This mechanism consists of a companion standard that defines
certain general data objects for reading and writing based on "tag names".

By having such a system one can generate application independent code that can be used by
any client to read and write to any server. This is particularly appropriate for "decision support"

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 62 –

type or "data fusion" type applications that lie on a higher abstraction level than the basic
control applications. It is still assumed that the control applications have more specialised
function blocks for use in between them, e.g., for GPS data output.

D.3.2 Client-server architecture

The principle for use of these companion standards is that a server makes information items
available to any client in the system. Likewise, given that the appropriate functionality is
installed, the client can write to information entities or subscribe to updates. It is assumed that
the server does not need to know the clients a priori and that the system is based on a client-
server architecture.

D.3.3 Tag number

Each information item in one server is identified by a tag number. This number is unique for
that server. To each tag number there can be several tag names. This can be used to provide
the same information item with different names based on yard naming principles (yard tags),
standard naming principles and/or manufacturer dependent naming principles.

The basic interface component provides functionality for mapping tag names to tag numbers.
This is through a search function with functionality dependent on the server in question. Very
simple servers may just have a fixed set of tag numbers with a static mapping to a set of tag
names. These servers may not support any search functional at all.

Tag numbers are the identifiers used when tag related information is transferred to and from
the server.

D.3.4 Tag sets

Servers that support subscribe and alarm handling do this with the help of tag sets. Tag set are
also established through searches, but can be manipulated with the help of functions in the
PCCTagSet interface.

Subscriptions on values or alarms can only be done through tag sets.

D.3.5 Tag information

Each tag is associated with a set of information attributes. These can be retrieved through the
MCP GetTagInfo. This information is, e.g., the engineering unit, expected precision,
sampling interval, a description string etc. It is expected that this information is static through
out the tags life.

D.3.6 Tag attributes

Some tags can have attributes associated with them. These are semi-static information that
can change through the tags life, but not very often and rarely or never uncontrolled, e.g., filter
constants, alarm limits, scaling factors etc. The number of attributes can be read in the tag
information data structure and the attributes can be inspected and changed through the
attribute related interface components.

D.3.7 Tag data

Each tag has a data value associated with it that is expected to change more or less
continuously. The data value can be read, written or subscribed to through the relevant
interface components.

Read data will always have a quality flag saying to what degree the value has the required
quality, a time stamp and pending alarm flag information.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 63 –

D.3.8 Alarms

Alarms are a special case of tags where the server provides a mechanism for keeping a watch
on the tag value to raise an exception if the value changes in some defined manner. Alarms
are also assigned a sequence number that allows the client to determine if more than one
alarm has been raised on one tag.

Alarms needs to be acknowledged before they are removed from the active alarm list. This is
the case even if the value goes back to normal.

D.4 Application classes

The companion standards define three different application classes, all derived from
PACFullApplication. These classes are shown below.

PACReadableServer
PCCTagDatabase

(PCCTagText)
(PCCTagStream)

(PCCTagSubscribe)
(PCCTagAttributes)
(PCCTagNetsearch)

PACWritableServer
PCCUserAuth
PCCTagWrite

(PCCTagAttributeWrite)

PACAlarmSystem
PCCTagAlarm

Figure 16 - Tag application classes

Each application class have certain capabilities that can be added to and thereby specialising
the class into a more advanced class:

a) PACReadableServer: This is the basic class with capabilities for searching for tags and
for reading values, text or floating point. It can be extended with component interfaces for
subscription and for reading attribute values. It can also be extended with a component
interface for network wide search for tags.

b) PACWritableServer: This is an extension that allows writing tags and optionally
attributes. This application class requires user authentication.

c) PACAlarmSystem: This extends the write-able server with a subscription on alarms and a
mechanism for acknowledging alarms.

Note that both the subscription and the alarm handling component interfaces require the use of
the set definition interface component.

All interface components except the user authentication component shall be defined as
belonging to the physical interface “Tags”.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 64 –

D.5 Companion standard structure

The companion standards are organised in several component interfaces as discussed in the
previous clause. In addition to the interface components, the definitions also contains the
application definitions and a general data type definition.

The below diagram shows the relationship between the interface components. Note that the
three classes TagRead, TagWrite and TagAlarm represent the application classes as
discussed in the previous clause and not interface classes as such.

TagRead

PCCTagDatabase
GetInfo/GetTagInfo

GetTagCodes
GetTagValue

PCCTagAttributes
GetTagAttrInfo

GetTagAttrValues

PCCTagWrite
ModifyTagValue

PCCTagSubscribe
SubscribeOnTime

SubscribeOnChange

TagWrite

PCCTagSet
GetTagSet

RemoveFromTagSet
AddToTagSet

PCCTagAttributeWrite
SetTagAttrValues

PCCTagText
GetTagText

PCCTagAlarm
GetAlarms
AckAlarm

TagAlarm
PCCTagNetsearch

SendReq
ReceiveAck

PCCTagStream
GetTagStream

Figure 17 - Tag interface components relationships

The diagram represents each of the basic application types as a specialisation of its super-
class where each specialisation level aggregates more component interfaces. The empty rings
denote optional component interfaces and the derivation triangle a class that needs its super-
class for instantiation. The attributes are the connection points.

D.6 File structure

In addition to the classes described in the previous diagrams, there is also a general data type
definition file and a file with standard tag names. The below table defines the files and their
contents.

Table 5 - Tag related companion standards

Companion standard Description File name

PACReadableServer Application for reading tagread.mcs

PACWritableServer Application: Add write tagwrite.mcs

PACAlarmSystem Application: Add alarm handling tagalarm.mcs

TagData Data type definitions tagdata.mcs

PCCTagDatabase General data base functionality datag.mcs

PCCTagText Read text value tags datat.mcs

PCCTagStream Read a stream address datas.mcs

PCCTagNetsearch Search network for tags datan.mcs

PCCTagAttributes Read and find attributes dataatt.mcs

PCCTagSubscribe Subscribe to tag values datasub.mcs

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 65 –

Companion standard Description File name

PCCTagWrite Write tag values dataw.mcs

PCCTagAlarm Read and handle alarms dataa.mcs

PCCTagSet Define set of tags dataset.mcs

PCCTagAttributeWrite Write attribute values dataattw.mcs

TagStandard Standard tag names tags.mcs

D.7 Standard tag names

D.7.1 General

D.7.1.1 Internal and external representation

Note that the tag name has to be encoded in a fixed number of characters and, due to protocol
requirements, adhere to a fixed structure. These rules apply only to the protocol and internal
representation may use other formats, e.g., more compact to save storage or search times. It
may also be useful to format the tag name differently for presentation to humans, although this
may cause problems with recognition of the same tag name on different systems.

D.7.1.2 Tag name length

The tag name is limited to 24 characters maximum. Shorter tag names shall be null terminated.

D.7.1.3 Character set

All standard tag names (P-type and S-type) shall only use upper case letters (‘A’ to ‘Z’
inclusive), lower case letters (‘a’ to ‘z’ inclusive) or decimal numbers (‘0’ to ‘9’ inclusive). In
addition, the special character dash (‘-‘), under score (‘_’) or period (‘.’) can be used.

Character in this context is the basic PISCES type char8_m.

D.7.1.4 General tag name structure

All tag names shall have a structure as described below:

a) Tag name class: The first character shall be a lower case letter identifying the tag name
group. Currently the following groups are defined:
p: Tag with name conformant to the PCS rules presented here
y: Yard tag with name structure defined by external entity.
s: Standard tag pointing to a ship independent information item
i: Internal tag defined by manufacturer.

b) Tag name body: The rest of the name is structured dependent on the tag name class.

D.7.2 Structure of P tag name class

D.7.2.1 Introduction

The P tag name class body is structured according to the rules presented in this clause. The
name body will be divided into groups, each consisting of a defined number of upper case
characters followed by from zero to any number of decimal numbers. The name is structured
so that it can be parsed by a regular expression.

D.7.3 General structural rules

D.7.3.1 Outline structure

The outline format for the p class tag name is presented below.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 66 –

pMGnn.SGnn.TC.nn
p - Identify p class.
 MG - Main group (two letters)
 nn - Optional main group instance number
 SG - Sub group (two letters)
 nn - Optional sub group instance number
 TC - Data type code (two letters)
 nn - Unique serial number

Each group of the tag is delimited by a period (full stop), except after the first 'p'. The main
group and the sub group may have an instance number immediately following.

D.7.3.2 Tag name length and encoding

The maximum length of 24 characters allows group and sub-groups of up to three digits and a
serial number of up to eight digits. It is possible to compress this in an internal representation
by omitting dots and the leading 'p'.

Special coding with more than three digits group numbers can be used for certain tag types,
e.g., container or other modular cargo. However, the total length shall not exceed maximum
name length.

D.7.3.3 Group and sub-group number structure

The group and sub group number shall be a decimal number, without leading zeros. In cases
where there are only one instance of the indicated group on board (e.g., only one main engine),
the instance number shall be omitted.

D.7.3.4 Serial number structure

The serial number will normally be a manufacturer dependent serial number intended to
distinguish between otherwise identical tag names. For some types of tags (e.g., contain
related identifiers), the serial number may contain structural information.

D.7.3.5 Uniqueness of name

The tag name must be unique within a MAU. It should be unique over the ship (the PISCES
network), although this is more difficult to ensure.

The main group codes must be unique. The general sub-group codes are unique among sub-
groups (achieved by assigning special first letters to these groups).

Other sub-group codes must be unique among the main groups in which it is used.

D.7.4 Main process codes

The main process code consists of two upper case letters optionally followed by a decimal
number. The below table lists the currently defined codes.

Table 6 - Main process codes

Process code Number Explanation

MP Engine Propulsion Engines

MG Engine Generator and auxiliary engines

ML Lubrication oil systems

MC Cooling Systems, fresh and/or salt water

MB Boiler

MD Shaft Drive Train, i.e, shafts, gears, clutches, propellers

MF Fuel Oil systems

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 67 –

MM Miscellaneous Machinery

CB Tank Ballast system

CL Tank Liquid Cargo Tanks

CH Hold Bulk Cargo

CR Reefer related entities, cooling (except CH groups)

CM Deck Modular cargo on decks (e.g., RO-RO)

CC Hold Container Cargo

CO Other/General Cargo

SH Ship data (name, captain, yard)

HU Hull related data

HF HVAC, Climate control, Provisions, Waste, Sanitary

NA Navigation (position, speed, ARPA, ECDIS etc.)

EV Environment (wind, waves, weather)

FA Central Fire and gas alarm

SY System/Sub-system (monitoring and alarm system itself)

OT Other/Miscellaneous

The number column specifies what the number code, if used, shall indicate. The number field
shall not be used if there is only one instance of the device (e.g., main machinery) on board.

Note that machinery and cargo and ballast main-groups form two super-groups. These super-
groups use the same first character ('M' and 'C' respectively).

D.7.5 Process sub-codes

The second group consists of two upper case letters that defines a sub-group for the main
process group. The sub-groups are divided into three classes dependent on whether they are
used anywhere on the ship (general sub-groups), whether they are used within one super-
group (e.g., machinery or cargo) or if they are specific to one single main group. The sub-group
code can be followed by a number as for the main code.

D.7.6 General sub-groups

The following table contains the currently defined sub-groups that are in general use over more
than one main process group. All codes use 'X', 'Y' or 'Z' as first character. These characters
are reserved for these groups.

Table 7 - General sub-groups

Sub-group Number Explanation

ZZ No specific subgroup

XP Pump

XV Valve

XE Electrical motor

XT Tank

XM Manifold

XL Pipe-line, tube

XC Compressor

XS System/Subsystem (network, monitoring system itself)

XH Heat exchanger

Numbering will normally be dependent on the main group in use.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 68 –

D.7.7 Automation related sub-group

This standard does not cover general automation and no more details in this area is provided
here.

D.7.8 Navigation sub-groups

The following table identifies navigation related sub-groups.

Table 8 - Navigation sub-groups

Sub-group Number Explanation Main Process
Codes

GP GNS receiver NA

LC Loran C/Chaicka receiver NA

AR ARPA Radar NA

EC ECDIS/ECS NA

D.7.9 Data type indication group

The third group is two upper case letters specifying what kind of information item this is. The
code is based on a simplified version of general process equipment coding rules.

Table 9 - Data type indicators

Letter First position meaning EU Second position meaning

A Angle rad Alarm (no indication - "binary")

B

C Conductivity (Electrical) Ohm or S Control (output)

D Density/Specific Gravity kg/m3 Documentation (data models, text: in)

E Voltage V

F Flow m3/s

G Dimensions m

H

I Current (electrical) A Indication (input)

J Power kW

K Time s

L Level m HMI related data (input)

M Moisture or humidity % Maintenance/calibration data/history (in)

N

O

P Pressure Bar Parameter (filter, trend: in or out)

Q Quantity, event or counter

R Record/trend (input)

S Speed or frequency Hz, m/s,
knots, RPM

System status codes (in or out)

T Temperature oC

U Function block (composite) Multifunction (in or out)

V Viscosity Version/revision codes (input)

W Weight or force kg or N

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 69 –

X Any meaning Any meaning

Y System level

Z Position m or nm

The first character defines the type of data entity pointed to by the tag. Of special interest are:

- U: This code is used for composite data entities (function blocks).
- X: This code is used for entities not otherwise defined.
- Y: This code is used for entities relating to monitoring and alarm device itself.

The second character specifies if the entity is an output or input and if it is related directly to a
physical state (alarm, indication or control) or if it is related to more system oriented
information (HMI, documentation, version codes etc.).

A complex function block with several inputs and/or outputs would normally be coded as 'UX'.

D.7.10 Use of engineering units

The engineering unit in use will be available for the general alarm and monitoring system by
looking up static attributes of the tag. However, as a rule, the SI units corresponding to the
indicated measurement type (first character) shall be used.

The preferred engineering unit is listed in the EU column.

D.7.11 Sequence number

The last part of the tag name is a sequence number code. This code is specific to a particular
manufacturer or system integrator and cannot in general be relied on to have any specific
meaning. The sequence number shall consist of decimal digits only. Leading zeros are allowed.

D.8 Structure of standard tags (S class)

The standard tags (s name class) will use the same format as the p class tags, except that the
leading letter will be a lower case 's'.

The ‘s’ will show that this tag is a ship independent measurement with properties defined in a
general ship operational data model. The prparation of this model is out of the scope of this
standard.

D.9 Structure of yard tags (Y class)

The yard tag structuring shall be determined by the yard or any other authority that has an
overall responsibility for the design of the ship. The main purpose of the yard tags is to provide
a link between the automation system and the physical ship. It is suggested that all indicators
identified by a yard tag shall have the same yard tag on their corresponding measurement or
alarm.

D.10 Structure of internal tags (I class)

Internal tags have no particular rules for structuring other than the first character being the
lower case letter ‘i’.

D.11 New tag name classes

Other tag name classes can be defined by the standard organisations that maintain these
specification documents. No user should rely on any specific leading letter being free for own
internal use.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 70 –

D.12 General quality indicators

All information retrieved through the tag database mechanisms will be quality controlled by the
providing system. This quality control consists of several parts as discussed in the following
clauses.

D.13 Certification

The quality control principles for a specific application may have been checked and certified by
some agency or by the manufacturer himself. This certification is not mandatory and it is
considered out of scope of this standard. However, the GetInfo MCP provides a possibility to
specify if any certificate has been awarded to the quality control mechanisms. The actual
certificate or specification document must be obtained from the manufacturer.

D.14 Time stamp

All measurements shall be marked with the time at which they were collected. For raw sensor
data, the time stamp should be the time of the data acquisition. For derived data, it may be an
estimate of the time of validity.

The time stamp is accurate within the limits defined by the sampleTime attribute of the
relevant TagInfo data block.

D.15 Validity flag

All measurements shall be marked with a validity flag saying if the value has the required
quality or not. The flag can also attempt to quantify the level of non-conformance with quality
requirements. Legal values for the validity flag are defined as the interpretation StateCode.

The required quality is defined in the TagInfo data block in the form of the precision and
sampleTime attributes.

D.16 Authentication

The application providing this interface shall specify to what level the data values are
authenticated, i.e., guaranteed to be not tampered with. Normally, this will depend on the
mechanisms for data acquisition used by the application.

The authentication level is defined by the authentication flag in the TagInfo data block.

D.17 Companion standard specifications

D.17.1 DATA TYPES TagData
DATA TYPES TagData
 * This specification contains general data definitions for tag based
 data access.

 * Revision History
 990831 1.1 For IEC
 990512 1 Longer tag name, tag info, removed setin/out, added unit
 error codes.
 981130 A First, based on old interface CTagDatabase. Added some
 more on authentication.

 VERSION 1.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;---
REFERENCES

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 71 –

 General

;---
GLOBAL

 ;---
 ; Tag identities
 ;---
 INTERPRETATION TagNumber OF int32_m
 * The container for tag numbers. The number zero is reserved as no
 tag.

 0 = NO_TAG ; Undefined tag

 ;---
 INTERPRETATION TagName OF [32]char8_m
 * Tag name for a measurement point, with terminating null or
 termination at end of array (max 32 significant characters).

 * Some interfaces will contain both internal tag codes constructed
 as specified in this standard and yard specific codes. This
 means that different tag names can have the same tag number.

 ;---
 DATA BLOCK TagId
 * An aggregate of tag name and number. Note that different tag
 names may have the same number (aliasing of name is allowed).

 TagNumber number ; Tag number
 TagName name ; Tag name

 ;---
 INTERPRETATION TagSet OF int32_m
 * An identifier for a set of tags. A valid set id points to an
 internal structure in the server that lists all tags in the set.
 Some servers can have statically defined sets. The value zero is
 used to indicate no valid set. The ALL_TAGS set defines all tags
 in the server (not always supported as set).

 0 = NO_SET
 1 = ALL_TAGS

 ;---
 ; Various application classification info
 ;---
 INTERPRETATION Conformance OF [32]bool_m
 * These bit fields are used to indicate conformance level for this
 interface. This corresponds to the number of components supported
 with the TagData interface taken as implicit. Additional
 components are:

 * The INCMAP/DECMAP flags indicate if the number
 of tag codes in use changes during the life time of the
 server. The first means that the number of tags may increase,
 the second that it may decrease.

 0 = TC_INCMAP ; Increment tag number map
 1 = TC_DECMAP ; Decrement tag number map
 ;
 2 = TC_ATTRIBUTES ; Additional support of TagAttributes
 3 = TC_ALARM ; Additional support of TagAlarm
 4 = TC_WRITE ; Additional support of TagWrite
 5 = TC_COMPLEX ; Additional support of TagDataComplex
 6 = TC_STREAM ; Additional support of TagDataStream
 7 = TC_SUBSCRIBE ; Additional support of TagDataSubscribe

 ;---
 INTERPRETATION Certificates OF [16]bool_m
 * These bit fields are used to show which certificates the
 interface has. All false means no certificates.

 0 = TC_OWNQA ; Own documentation on data QA
 1 = TC_EXTQA ; External certificate for data QA
 2 = TC_OWNDA ; Own documentation on authentication
 3 = TC_EXTDA ; External certificate for authentication

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 72 –

 ;---
 INTERPRETATION TagKeyCode OF [32]bool_m
 * These tag keys are used to specify the allowed key type searches
 supported by an implementation of the interface. The key is one
 bit in a 32 bit word (max is 24 bits as 8 is allocated to
 implementation specific keys).

 0 = KEY_NONE ; No key based search, returns all tag codes
 1 = KEY_NUMBER ; Search on tags by tag number allowed
 2 = KEY_NAME ; Search on tags by name allowed
 3 = KEY_WCNAME ; Wildcard search by name allowed
 4 = KEY_LOC ; Search by location code (LocationCode)
 5 = KEY_TYPE ; Search on tag type (TagType)
 ;
 23 = KEY_SETDEF ; Can/will define a tag set
 24 = KEY_USER ; Implementation specific keys to 31

 ;---
 INTERPRETATION TagKey OF char8_m
 Contains char8_m key search pattern. The string shall be null
 terminated or terminated at end of array. It is legal to send an
 empty string for KEY_NONE. Only one search bit can be set from the
 following possibilities:

 * KEY_NONE: No pattern (length = 0), Return all tags.

 * KEY_NUMBER: A single number, a series of decimal numbers
 separated by comma (,), and/or a range shown by two numbers
 separated by a minus sign (-), e.g., "23", "23,24,26" or
 "20-25". In the latter case, the empty string represents
 infinity, e.g., "0-" is all numbers. The numbers represent tag
 code numbers. This function is most useful to define sets.

 * KEY_NAME: A single tag name or a series of tag names separated
 by comma: "tag1" or "tag1,tag2"

 * KEY_WCNAME: One name with the following wildcards:
 - `?' (question mark) - any one legal character,
 - `*' (asterix) - any length sequence of any legal character
 Examples: "tag?" and "ta*" both match "tag1" and "tag2", ta* is
 the only that match "tag10".

 * KEY_LOC, KEY_TYPE: A number (as KEY_NUMBER), with location codes
 (see general data types) instead of tag code numbers.

 ;---
 INTERPRETATION TagType OF int16_m
 * This code is used to specify the type of a tag.

 0 = TT_VALUE ; Plain numeric type (f64)
 1 = TT_TEXT ; Plain text type ([64]c8)
 2 = TT_ALARM ; Alarm type, VALUE with alarm limits
 3 = TT_STREAM ; Stream/file type
 4 = TT_FB ; Function block, value with attributes
 5 = TT_COMPLEX ; Other formatted type

 ;---
 INTERPRETATION TagAuthentication OF int16_m
 * This code specifies the mechanism used to authenticate a given
 tag. This applies to both originator and quality. TQ_NOTAMPER
 and TQ_AUTH is used if the device flags all internal and external
 precision loss and tampering or if the value cannot be tampered with
 or lose precision. Other flags are set to qualify this
 statement. Lower values means better authentication.

 0 = TQ_NOTAMPER ; Value cannot be tampered with, quality controlled
 1 = TQ_AUTH ; Data is fully authenticated, all exceptions flagged
 10 = TQ_CAUTH ; Full authenticated internally and controlled source
 20 = TQ_USOURCE ; Full authenticated internally uncontrolled source
 30 = TQ_TOPERATOR ; Operators are trusted and checked, but changes
 ; are not flagged.
 ;
 1000 = TQ_NONE ; No authentication in force

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 73 –

 ;---
 INTERPRETATION TagSemantics OF [16]bool_m
 * This code is used to specify the semantics of a tag. Read and
 write flags are not exclusive: Both means that the system can
 perform a function call with output dependent on input. Constant
 and unfiltered can be used in conjunction with other flags
 (normally only read).

 0 = TS_UNKNOWN
 1 = TS_READTHROUGH ; Read directly from physical unit
 2 = TS_READBUFFER ; Read from physical unit via buffer
 3 = TS_WRITETHROUGH ; Write directly to physical unit
 4 = TS_WRITEBUFFER ; Write to physical unit via buffer
 5 = TS_CONSTANT ; Constant value
 6 = TS_UNFILTERED ; No anti-aliasing done
 7 = TS_QUEUED ; Events are queued, no changes lost

 ;---
 DATA BLOCK TagInfo
 * Static information about a tag.

 * If engineering unit is undefined (EU_OTHER), the text
 representation of the unit (for printing purposes) shall be
 defined.

 * The precision is the minimum scalar distance that is
 necessary to say that a difference between two measurements is
 significant. This has meaning for scalar measurements and
 usually also for other multi-dimensional measurements, e.g.,
 position (typically use length of distance vector).

 * The sample interval is the maximum time before the server has a
 new measurement of the tag value ready. Check semantics for
 meaning of sample time (read and write through renders it
 meaningless). Note that tag values normally are anti-aliasing
 filtered before being supplied to user (based on sample
 time). The unfiltered semantics flag means that this is not
 done.

 * The tagAttributes entry specifies the number of
 extra attributes that the tag data base stores (see
 TagAttributes type for predefined attributes).

 * The fieldFlags shall be set for all valid entities. All false
 means that the block is invalid. All true is legal if non-used
 entities contain a proper value (including null terminated
 strings and null values).

 TagNumber tagNumber ; Numeric code for tag
 [48]char8_m description ; Description of tag
 TagType tagType ; Type of access mechanism
 EngineeringUnit engUnit ; Engineering unit or equivalent
 [8]char8_m euText ; Textual engineering unit
 TagSemantics tagSemantics ; Semantics of tag operation
 TagAuthentication authentication ; Quality control mechanisms
 float64_m precision ; Measurement precision
 word32_m sampleTime ; Sample interval in ms
 int16_m tagAttributes ; Attributes supported
 [10]FieldOk fieldFlags ; Field validity flags

 ;---
 ; Dynamic values
 ;---
 INTERPRETATION StateCode OF int16_m
 * State codes. Unused codes are user defined. For future expansion
 these codes should start at USERSTATES. Note the classifications
 of state codes. they are in increasing value:
 - SC_NORMAL is normal
 - Up to and including SC_AUTHENT means that value may have lost
 authenticity, but is still under control.
 - Up to a.i. SC_PRECISION loss in precision
 - Up to a.i. SC_UNRELIABLE possible spurious or locked value
 - Up to a.i. SC_DEFECT sensor malfunction
 - Up to a.i. SC_OPERR operation errors

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 74 –

 0 = SC_NORMAL ; operation completed as expected
 1 = SC_FILTERED ; Filter may affect value "unreasonably"
 2 = SC_OPERATOR ; Operator set value
 5 = SC_AUTHENT ; Other event that can effect authenticity
 ;
 6 = SC_PRECISION1 ; Loss in precision by factor 10
 7 = SC_PRECISION2 ; Loss in precision by factor 100
 8 = SC_PRECISION3 ; Loss in precision by factor 1000
 9 = SC_PRECISION ; Unknown loss in precision
 ;
 10 = SC_TIMEOUT ; Update timeout exceeded by source
 19 = SC_UNRELIABLE ; Unreliable value
 ;
 100 = SC_BADSENSOR ; Sensor specific errors follows
 101 = SC_OPEN ; Open circuit
 102 = SC_CLOSED ; Closed circuit
 103 = SC_SHORT ; Short circuit
 104 = SC_BROKEN ; Broken connection
 105 = SC_NOT_AVAILABLE ; Input or output is not available
 106 = SC_MAINTENANCE ; Unit under maintenance
 107 = SC_BLOCKED ; Input or output is blocked by operator
 199 = SC_DEFECT ; Unit is defect
 ;
 300 = SC_NOOP ; Specified tag does not support operation
 301 = SC_NOTAG ; No such tag
 302 = SC_NOSET ; No such tag set
 399 = SC_OPERR ; Unspecified error in data retrieval
 ;
 400 = SC_UDEAD ; Unit itself is dead
 401 = SC_ULINK ; Link to unit is dead
 499 = SC_UCODES ; Last unit related error
 ;
 10000 = SC_USERSTATES

 ;---
 INTERPRETATION AlarmState OF [16]bool_m
 * Alarm states bit map. All false is normal. Use alarm interface
 to retrieve detailed alarm state information. NONESSENTIAL
 shall only be set if there is another bit set and if the signal
 originates from a system that is not defined as essential, i.e.,
 that alarms shall have a lower priority than for essential
 systems. WARNING need not be set when ALARM is set.

 0 = AC_WARNING ; Value is outside normal, but no alarm
 1 = AC_ALARM ; Value is in alarm area
 2 = AC_NA_WARNING ; Non-acknowledged warning(s) exists
 3 = AC_NA_ALARM ; Non-acknowledged alarm(s) exists
 4 = AC_NONESSENTIAL ; This signal is not from an essential system

 ;---
 DATA BLOCK TagValue
 Values for one tag with standard f64 format.

 TagNumber tagNumber ; Numeric code for tag
 StateCode state ; State code
 AlarmState alarm ; Most important active alarm
 GlobalTime time ; Last updated
 float64_m value ; Current value

 ;---
 DATA BLOCK TagText
 Values for one tag with standard character format

 TagNumber tagNumber ; Numeric code for tag
 StateCode state ; State code
 GlobalTime time ; Last updated
 [64]char8_m value ; Current value

 ;---
 ; Attribute related data
 ;---
 INTERPRETATION TagAttrNumber OF int32_m
 * Each tag can have certain attributes associated with it.
 Normally, these are alarm limits and sometimes filter constants.
 This list specifies some common attributes. Additional

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 75 –

 attributes can be defined for an interface by codes from TA_USER
 and higher.

 0 = TA_NONE
 1 = TA_ALARMLOW
 2 = TA_ALARMHIGH
 4 = TA_ALARMLOWLOW
 3 = TA_ALARMHIGHHIGH
 ;
 1000 = TA_USER

 ;---
 INTERPRETATION TagAttrStatus OF int16_m
 * The status of an attribute value can be:

 0 = TAS_VALID ; value is valid and activated
 1 = TAS_DISABLED ; value is valid, but disabled
 2 = TAS_NOATTRIBUTE ; no such attribute for tag
 3 = TAS_NOTAG ; no such tag

 ;---
 DATA BLOCK TagAttrInfo
 * This is the container for an attribute information structure.
 Text strings are empty if not used. The description string
 should be suitable for printing out information about the
 attribute in a table, e.g., for alarm limits.

 TagAttrNumber attribute ; Attribute code
 [32]char8_m description ; Description of attribute
 EngineeringUnit engUnit ; Engineering unit or eqivalent
 [8]char8_m euText ; Textual engineering unit
 BlockOk valid ; valid flag

 ;---
 DATA BLOCK TagAttrValue
 * This is the container for an attribute

 TagAttrNumber attribute ; Attribute code
 TagNumber tagNumber ; Tag number
 TagAttrStatus status ; Status of value
 float64_m value ; The value

 ;---
 DATA BLOCK TagAttrValueW
 * This is the container for an attribute write value

 TagAttrNumber attribute ; Attribute code
 TagNumber tagNumber ; Tag number
 float64_m value ; The value

 ;---
 ; Alarm related data definitions
 ;---
 INTERPRETATION AlarmSequence OF int16_m
 * A tuple of tag number and alarm sequence number will identify an
 alarm instance. This is the sequence number.

 ;---
 INTERPRETATION AlarmCode OF int32_m
 * Alarm codes. Zero is normal. Codes above USERALARMS are user
 defined. Codes below USERALARMS are reserved for future
 expansion.

 0 = AC_NORMAL
 1 = AC_SOMEALARM ; Undefined type of alarm
 2 = AC_LOWLOW ; Signal has very low value
 3 = AC_HIGHHIGH ; Signal has very high value
 4 = AC_LOW ; Signal has low value
 5 = AC_HIGH ; Signal has high value
 6 = AC_INSTRUMENT_HIGH ; Input value too high for instrument
 7 = AC_INSTRUMENT_LOW ; Input value too low for instrument
 8 = AC_DEVIATION_LOW ; Low deviation between signals
 9 = AC_DEVIATION_HIGH ; High deviation between signals
 10 = AC_RATE_OF_RISE ; Signal rising too fast
 11 = AC_OSCILLATIONS ; Signal oscillating

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 76 –

 12 = AC_TOO_LONG ; Too slow response
 13 = AC_OPEN ; Input open
 14 = AC_CLOSE ; Input closed
 15 = AC_ERROR ; Internal instrument error
 16 = AC_OPERATOR ; Operator intervention in instrument
 ;
 100000 = AC_USERALARMS

 ;---
 DATA BLOCK TagAlarmValue
 * Values for one tag with alarm information. The value will have to
 be interpreted according to the information specified in the
 TagInfo data block. Use state code to check if block is ok.

 TagNumber tagNumber ; Numeric code for tag
 AlarmSequence seqNumber ; Alarm instance for this tag
 StateCode state ; State code
 AlarmCode alarm ; Alarm state code
 AlarmState aState ; Importance of alarm
 GlobalTime time ; Time of trigger
 float64_m value ; Current value
 float64_m limit ; Limit that were broken

D.17.2 Application PACReadableServer
APPLICATION PACReadableServer DERIVED FROM PACFullApplication

 * This application contains the general framework for the creation
 of an interface to any type of data server. Based on a tag name
 (16 character text string), it is possible to read the data item.

 * Revision history :
 1999-08-31 1.0, ojr, For IEC
 1998-11-30 A, ojr : First

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES

 PCCTagDatabase

 ; The following interfaces are optional, and can be added

; PCCTagText
; PCCTagSubscribe
; PCCTagAttributes
; PCCTagNetsearch

;--
USAGE

 * The application is the minimum implementation of a tag based data
 base reader. Refer to the individual interface specifications for
 detailed discussion of functionality. Additional interface
 components can be added to support subscription or network wide
 search capabilities. This has to be done as derivations from this
 class.

;--
INTERFACES

 ACCEPT TagData

 INTERFACE COMPONENT PCCTagDatabase

 ; And optionally one or more

; INTERFACE COMPONENT PCCTagText
; INTERFACE COMPONENT PCCTagSubscribe
; INTERFACE COMPONENT PCCTagAttributes

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 77 –

 ; If net search shall be used, one must also provide accept and connect
 ; interfaces.

; CONNECT ABCM1

; INTERFACE COMPONENT PCCTagNetsearch

; ACCEPT ABCM1

; INTERFACE COMPONENT PCCTagNetsearch

D.17.3 Application PACWritableServer
APPLICATION PACWritableServer DERIVED FROM PACReadableServer

 * This application contains the general framework for the creation
 of an interface to any type of data server. Based on a tag name
 (16 character text string), it is possible to read and write the
 data item.

 * Revision history :
 1999-08-31 1.9, ojr, IEC issue
 1998-11-30 A, ojr : First

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES

 PCCUserAuth
 PCCTagWrite

 ; The following interfaces are optional, and can be added

; PCCTagAttributeWrite

;--
USAGE

 * The application is the minimum implementation of a tag based data
 base writer. Refer to the individual interface specifications for
 detailed discussion of functionality. Additional interface
 components can be added to support attribute write.

;--
INTERFACES

 ACCEPT Authenticate
 * Need one interface for user authentication.

 INTERFACE COMPONENT PCCUserAuth

 ACCEPT TagData
 * and the actual write interafce.

 INTERFACE COMPONENT PCCTagWrite

 ; And optionally

; INTERFACE COMPONENT PCCTagAttributeWrite

D.17.4 Application PACAlarmSystem
APPLICATION PACAlarmSystem DERIVED FROM PACWritableServer

 * This application contains the general framework for the creation
 of an interface to any type of data server. Based on a tag name
 (16 character text string), it is possible to read and write the
 data item.

 * Revision history :

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 78 –

 1999-08-31, 1.0, ojr, IEC issue
 1998-11-30 A, ojr : First

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

;--
REFERENCES

 PCCTagAlarm

;--
USAGE

 * The application is the minimum implementation of a tag based alarm
 system. Refer to the individual interface specifications for
 detailed discussion of functionality.

;--
INTERFACES

 ACCEPT TagData

 INTERFACE COMPONENT PCCTagAlarm

D.17.5 Interface PCCTagDatabase
INTERFACE PCCTagDatabase
 * This interface contains the basic functionality for reading and
 writing tag based data items from a data base. This part of the
 interface is used to access the tags data base and determine
 properties of tags.

 * Revision History
 990831 1.0 IEC issue
 990512 F Unit status, length fields
 981201 E Removed data def
 980810 D Separate text interface, name removed from info and
 into id. Use just alarm classes. Added set and various

 other.
 980810 C Changed class specification
 971202 B Removed tag access to TagDataValue, Added info
 971111 A First release, based on interface "Data"

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * This interface allows the look-up of tags to get interface specific
 numeric tag codes. Tag codes can be retrieved from the GetTagCodes
 entry based on a key search. Several key types may be legal. It is
 possible to retrieve information on the tags and the current
 value. Notes to implementors:

 * This interface uses an internal code (TagNumber) to reference a
 tag. The value of this code for a given tag may or may not be
 the same between two different connects to the MAU implementing
 the server. The GetInfo instance code should be used after each
 server restart to check if tag code mappings has been changed.
 This code shall reflect the following:

 * It is legal to build the tag data base incrementally while the
 server is running.

 * It is legal to remove tags from the data base while the server
 is running.

 * It is not legal to reuse internal codes for different tags.

 * The tag data server may allow the client to search for tags
 based on various keys (TagKeyCode). However, some servers may

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 79 –

 have constant tag code mappings and no search option at all.

 * All return blocks are less than 2000 bytes long.

;---
REQUIRED DOCUMENTATION

 TAGLIST ; List of tag names supported by the interface. The list
 ; should preferably contain engineering units etc.

;---
REFERENCES
 General
 TagData

;---
CONNECTION POINTS

 ;---
 SUBSCRIBE GetInfo
 * Used to retrieve information about interface. Subscribable,
 changes in configuration (number of tags) will be reported to
 all subscribing clients. Note that mapping cannot change during
 connection time as reuse of tag codes are not allowed.

 * The first fields are the number of tags supported by the
 interface and what search keys it supports (see GetTagCodes).

 * The instance code can be used to check if the configuration of
 the server MAU has changed from the last invocation. It shall be
 incremented each time the _mapping_ between tag codes and tag
 names has been changed (i.e., constant code shows that the
 mapping is constant). Note that increment or decrement in tag
 number do not imply that the mapping has changed. The value zero
 means that the mapping changes each time the server MAU
 restarts. Reuse of tag codes is not allowed during server MAU
 life-time.

 * The conformance flags defines what additional extensions to the
 interface that are available. The inc/dec flags may or may not
 cause the instanceNo value to be zero (i.e., it is possible to
 have changing number of tags where the mapping between each tag
 and tag code is kept constant => instanceNo is constant
 non-zero).

 * The certificates field specify if the device has been certified
 with respect to data authentication and data quality control. The
 user need to check the manufacturer and equipment type to get
 hold of the relevant certificates.

 * The unit state codes indicate state of the physical unit generating
 data. Errors in this (other values then SC_NORMAL – zero) means that
 all tags are stuck at last value. No further errors will be generated.

 OUTPUT
 word32_m noOfTags ; Number of tags in interface
 TagKeyCode keys ; Search keys supported
 word32_m instanceNo ; instance/version code
 Conformance conformance ; Conformance level
 Certificates certified ; QA certificates flags
 StateCode unitState ; state of physical unit
 BlockOk ok ; true if data block is valid

 * Precondition
 none

 * Postcondition
 returns information. unitState will indicate if the interface can be
 used or not.

 ;---
 FUNCTION GetTagCodes
 * Used to retrieve numeric tag codes for specified search pattern.
 The first two input numbers are used to continue upload. Some
 interface instances may have this function as a dummy, in which

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 80 –

 case it always returns NOT_IMPLEMENTED.

 INPUT
 int32_m startIndex ; Start returning records here
 TagKeyCode keyType ; Type of key used
 [word16_m:1500]TagKey key ; Search key and/or define set

 OUTPUT
 word8_m status ; Request status
 bool_m more ; More hits
 int32_m endIndex ; The hit index of the last code
 TagSet setCode ; The set code if set requested
 [word16_m:48]TagId ids ; Returned tags

 * Precondition

 * keyType must be one of the legal key types for this interface.

 * The startIndex entry shall be zero for first call on new
 search. To get more entries than can be returned by one call,
 startIndex shall be set to the previously returned endIndex
 and key kept constant for following calls.

 * Note that tag names can be aliased and that the same number
 may appear several times in different named ids.

 * Postcondition

 * status is zero for everything all right other error codes for
 status are:

 - BAD_KEY (= 1), Illegal key type (more than one key or unsupported
 key).
 - BAD_STRING (=2), Search key could not be interpreted (errors).
 - NOT_IMPLEMENTED (=3), function not implemented.
 - SET_NOT_SUPPORTED (=4), returns valid codes, but defines no

set.

 * more is true if there may be more hits. endIndex specifies the
 internal index of the next tag to be searched. Note that
 startIndex and endIndex is used to point into the server's
 internal data base and may not have any external
 interpretation.

 * Note: Search on one tag number shall result in more than one hit if
 several tag names (e.g., one yard tag, one internal tag and one
 p-tag) is mapped to the same tag code.

 ;---
 FUNCTION GetTagInfo
 * Used to retrieve a number of tag information entries.

 INPUT
 [word16_m:22]TagNumber tagCode ; Code numbers

 OUTPUT
 [word16_m:22]TagInfo info ; Returned info

 * Precondition
 none

 * Postcondition
 Returns the number of tags that were *found*. This may be less
 than that requested, if some requested codes are undefined.
 Check numbers to be sure of mapping. Non-returned numbers mean
 that the tag number does not exist.

 ;---
 FUNCTION GetTagValue
 * Used to retrieve a number of values using an array of tag codes.
 This can be used on all standard tags that use f64 format.

 INPUT
 [word16_m:82]TagNumber tagCodes

 OUTPUT

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 81 –

 [word16_m:82]TagValue values

 * Precondition
 none

 * Postcondition
 Return all tags found (may be less than requested if some
 requested codes are undefined). Check state code to verify
 validity of values and numbers to check existence of tags.

D.17.6 Interface PCCTagText
INTERFACE PCCTagText
 * This interface contains additional functionality to PCCTagDatabase
 to read text strings.

 * Revision History
 990831 1.0 IEC issue
 981201 A Added text

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * Use together with PCCTagDatabase

 * All return blocks are less than 2000 bytes long.

;---
REQUIRED DOCUMENTATION

 TAGLIST ; List of tag names supported by the interface. The list
 ; should preferably contain engineering units etc.

;---
REFERENCES
 General
 TagData

;---
CONNECTION POINTS

 ;---
 FUNCTION GetTagText
 * Used to retrieve a number of tag text strings using an array of
 tag codes. This can be used on all standard tags that use text format.

 INPUT
 [word16_m:24]TagNumber tagCodes

 OUTPUT
 [word16_m:24]TagText values

 * Precondition
 none

 * Postcondition
 Return all tags found (may be less than requested if some
 requested codes are undefined). Check state code to verify
 validity of values and numbers to check existence of tags.

D.17.7 Interface PCCTagStream
INTERFACE PCCTagStream
 * This interface contains additional functionality to PCCTagDatabase
 to read a defined stream address.

 * Revision History
 990831 1.0 IEC issue
 981201 A Added stream

 VERSION 1.0
 DATE 1999-08-31

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 82 –

 RESPONSIBLE IEC TC80/WG6

USAGE
 * Use together with PCCTagDatabase

;---
REQUIRED DOCUMENTATION

 TAGLIST ; List of tag names supported by the interface. The list
 ; should preferably contain engineering units etc.

;---
REFERENCES
 General
 TagData

;---
CONNECTION POINTS

 ;---
 FUNCTION GetTagStream
 * Used to retrieve one tag stream. The client supplies a stream
 address and the server, if it accepts the tag, is expected
 to try to connect to the address after completing the call. The
 client shall have established the listening address prior to the
 call. The timeout is the maximum delay before the client
 should expect a conenction to be made.

 * The server will send data as soon as the connection has been
 established and will close the link when the last octet has been
 sent.

 INPUT
 TagNumber tagCode
 address_m address ; Address of TP network
 word32_m nnn ; Node address
 TPSInstance port ; Additional port information

 OUTPUT
 StateCode state ; Current state or error
 word32_m timeout ; Timeout for connection attempt

 * Precondition
 Client has established listening address.

 * Postcondition
 Returns ok if tag is found and server is ready to send. The
 following state codes has special meaning:
 SC_NORMAL: Tag is ok and port will be connected to immediately.
 SC_NOT_AVAILABLE: Server is currently not available (e.g., other user)

D.17.8 Interface PCCTagNetsearch
INTERFACE PCCTagNetsearch
 * This interface contains additional functionality to search network
 via broadcast for tags.

 * Revision History
 1999-08-31 1.0 ojr, SINTEF: For IEC
 981201 A First

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * Use together with PCCTagDatabase. Most users of the interface
 should define two interfaces: One for sending (CONNECT) and one
 for receiving (ACCEPT). Note that they are specified to operate on
 the Anonymous Broadcast MAU address ABCM1.

;---
REFERENCES
 General

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 83 –

 TagData

;---
CONNECTION POINTS

 ;---
 ANONYMOUS BROADCAST SendReq
 * Used to send a request for certain tag names. The functionality
 is similar to the general PCCTagDatabase.GetTagCodes function,
 except that only the MAU name of the keeper of the tag is
 returned and the return value must be retrieved through the
 GetAck MCP. Further investigations must be done on that MAU.

 OUTPUT
 TagKeyCode keyType ; Type of key used
 [word16_m:400]TagKey key ; Search key

 ;---
 ANONYMOUS BROADCAST GetAck
 * Used to receive a SendReq acknowledgement. Note that the search
 key is repeated.

 OUTPUT
 word8_m status ; Request status
 TagKeyCode keyType ; Type of key used
 [word16_m:400]TagKey key ; Search key
 int32_m hits ; Number of hits
 [32]char8_m mauName ; reporting MAU

 * Precondition
 Somebody sent a request.

 * Postcondition
 Returns the MAU name and the number of hits.

D.17.9 Interface PCCTagAttributes
INTERFACE PCCTagAttributes
 * This interface component contains additional functionality for reading
 tag attribute values from a data base.

 * Revision History
 1999-08-31 1.0 ojr, SINTEF: For IEC
 981201 C Change name, moved data defs
 980813 B Attribute ids valid for all tags
 980810 A First

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * This interface allows the look up of attributes to tags. It
 requires the use of the CTagsDatabase interface for getting tag
 codes.

 * Attributes have a scope of the application they reside in. One
 attribute can, however, be valid for only one (or none)
 tags. There is a function to retreieve all attributes for one tag
 and there is a function to retrieve information on
 attributes. Some attributes can be given constant values for all
 applications.

;---
REFERENCES
 General
 TagData

;---
CONNECTION POINTS

 ;---
 FUNCTION GetTagAttrInfo
 Used to retrieve attribute codes for specified tags. NO_TAG

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 84 –

 returns all attributes.

 INPUT
 TagNumber tag ; For what tag
 int32_m fromIndex ; return more attributes

 OUTPUT
 [word16_m:40]TagAttrInfo ; return values
 int32_m nextIndex ; signal more attributes

 * Precondition
 fromIndex shall be zero for first call. Tag code must be valid
 or NO_TAG. If more attributes than can be returned by one call,
 fromIndex can be set to last return value of nextIndex in
 following calls.

 * Postcondition
 No values may be returned for invalid tags or attribute codes.
 Status field in each information block defines validity.
 nextIndex is non-zero if more attributes can be retrieved.

 ;---
 FUNCTION GetTagAttrValues
 Used to retrieve a number of attribute values, including alarm
 information, using an array of tag codes. This call will only
 return tags that have associated attribute values. State codes
 will give any error messages.

 INPUT
 [word16_m:40]TagNumber tagCodes
 [word16_m:40]TagAttrNumber attrCodes
 int32_m fromIndex

 OUTPUT
 [word16_m:96]TagAttrValues values
 int32_m nextIndex

 * Precondition
 Any combination of tag codes and attribute codes can be
 used. The returned values are the intersection between the two
 groups (tag number AND attribute number). fromIndex is used if
 there are more values to be returned. It shall be zero on first
 call and can be nextIndex on subsequent calls.

 * Postcondition
 All valid combinations are returned. nextIndex is non-zero if
 more combinations are possible. In this case one can use
 repreated calls to retrieve all values.

D.17.10 Interface PCCTagSubscribe
INTERFACE PCCTagSubscribe
 * This interface contains the basic functionality for
 subscribing to tag values.

 * Revision History
 1999-08-31 1.1 ojr, SINTEF: For IEC
 990516 C Max/min time, only one MCP
 981201 B Changed name
 980826 A First release, based on interface "CTagAlarm"

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * This interface allows subscribing to standard tag values. It
 requires the use of PCCTagDatabase and PCCTagDataSet.

;---
REFERENCES
 General
 TagData

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 85 –

;---
CONNECTION POINTS

 ;---
 INDIVIDUAL SUBSCRIBE TagSubscribe
 * Subscribe on values on a time base.

 INPUT
 TagSet id ; Set id
 Time minInterval ; Min interval for updates
 Time maxInterval ; Max interval for updates

 OUTPUT
 TagSet id ; Set id
 word16_m status ; Return status
 [word16_m:82]TagValue value ; Data

 * Precondition
 Set must be defined. Several subscriptions can be made on
 different sets. Set should be small enough for return value. The
 subscription principle is determined by timeouts:
On change: minInterval is zero
Watchdog: maxInterval non-zero
Limit messages: minInterval non-zero

 * Postcondition
 Initial call returns status code. The following are used:
 - BAD_SET (= 1), Illegal set code
 - SET_EMPTY (=2), No subscribe-able data in set
 - TOO_SHORT (=3), To small interval set
 - TOO_MUCH (=4), Set too large to send

 * The transaction should be cancelled if a non-zero status code
 is returned. This to avoid having pending transactions in the
 system.

 * Note that a unit down does not cause individual tag messages to
 be sent. Note also that changes in tag is value, alarm or state
 changes.

 * Subscription acknowledgement contains from one and upwards
 data entries. Several messages will be sent immediately after each
 other if there is not enough room in one message.

D.17.11 Interface PCCTagWrite
INTERFACE PCCTagWrite
 * This interface component contains the additional functionality for
 writing tag based data items to a data base.

 * Revision History
 1999-08-31 1.0 ojr, SINTEF: For IEC
 990516 C Modified input to cover all tag state
 980826 B Changed status code
 980810 A First release, based on interface "TagDataExtended"

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * This interface allows writing tag values based on interface specific
 numeric tag codes. It is an add-on to the PCCTagDatabase
 interface. It may require user authentication.

;---
REFERENCES
 General
 TagData
 UserAuth

;---
CONNECTION POINTS

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 86 –

 ;---
 FUNCTION ModifyTagValue
 * Used to write and/or read values to a number of tags. The input
 field contains data for write or function type tags. The output
 field contains data for read or function type tags.

 INPUT
 [word16_m:32]TagValue inValue ; Input value

 OUTPUT
 UaStatus authStatus ; Authorisation status
 [word16_m:32]TagValue outValue ; Any output

 * Precondition
 Input values must be defined for relevant tags. Values for
 non-input tags are ignored. All attributes (alarm, time, value)
 can be set.

 * Postcondition
 Return all tags with state code. Check state code for status on just
 written data. For read data the state code is as normal. The authState
 code is non-zero if the authentication failed (usually only for
 write)

D.17.12 Interface PCCTagAlarm
INTERFACE PCCTagAlarm
 * This interface component contains the basic functionality for
 handeling alarms on a tag name basis.

 * Revision History
 1999-08-31 1.0 ojr, SINTEF: For IEC
 981201 E Change name, add acknowledgement
 980813 D Only alarms, added individual subscribe
 980108 C Added state update timeout exceeded
 971202 B Removed tag info to TagData
 971111 A First release, based on interface "Data"

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * This interface allows subscribing to alarms and acknowledgement of
 alarms. It requires a user authentication module in addition to
 the use of the basic PCCTagDatabase component.

;---
REFERENCES
 General
 TagData
 UserAuth

;---
CONNECTION POINTS

 ;---
 INDIVIDUAL SUBSCRIBE GetAlarms
 * Subscribe on new alarms on a given set of tags. Each client can
 subscribe on a different set, each client can also subscribe on
 a number of sets, each set representing one transaction.

 INPUT
 TagSetCode id ; Set id

 OUTPUT
 TagSetCode id ; Set id
 word16_m oStatus ; Operation status
 [word16_m:40]TagAlarmValue alarms ; Alarms

 * Precondition
 Set must be defined. Several subscriptions can be made on
 different sets.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 87 –

 * Postcondition
 Initial call returns only status code. The following are used:
 - BAD_SET (= 1), Illegal set code
 - SET_EMPTY (=2), No subscribable alarms in set
 - AUTHORISATION (=3)

 * The transaction should be canceled if a non-zero status code
is returned. This to avoid having pending transactions in the
system.

 * Subscription acknowledgement contains from one and upwards
alarm entries.

 ;---
 FUNCTION AckAlarm
 * Acknowledge one alarm.

 INPUT
 TagNumber id ; The tag
 AlarmSequence seq ; The alarm

 OUTPUT
 UaStatus aStatus ; Authorisation status
 word16_m oStatus ; Operation status
 TagValue value ; New value for tag

 * Precondition
 Tag and sequence must be defined.

 * Postcondition
 Status code reports success (Zero) or failiure, value reports value
 after acknowledgement.
 - BAD_TAG (= 1), No such tag
 - BAD_SEQ (=2), No such alarm
 - BAD_AUTH (=3) Authorisation failed, check aStatus.

D.17.13 Interface PCCTagSet
INTERFACE PCCTagDataSet
 * This interface contains functionality for manipulating tag
 sets. The basic set can be defined by the GetTagCodes MCP and
 modified here. It can also be defined here.

 * Revision History
 1999-08-31 1.0 ojr, SINTEF: For IEC
 990516 C Added define set to add
 981201 B Changed name
 980813 A First release

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * Used to inspect or modify tag sets.

 * All sets associated with one client is cleared when a client
 disconnects.

 * A set may be removed if it is empty.

 * A set can be cancelled by the only client that use it.

;---
REFERENCES
 General
 TagData

;---
CONNECTION POINTS

 ;---
 FUNCTION GetTagSet

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 88 –

 * Return tags in a tag set.

 INPUT
 TagSet setCode ; The set code
 int32_m startIndex ; Start returning records from this hit

 OUTPUT
 word8_m status ; Request status
 bool_m more ; More hits
 int32_m endIndex ; The hit index of the last code
 [word16_m:256]TagNumber codes ; Returned tags

 * Precondition

 * The startIndex entry shall be zero for first call on new
search. To get more entries than can be returned by one call,
startIndex shall be set to the previously returned endIndex
and key kept constant for following calls.

 * Postcondition

 * status is zero for everything all right other error codes for
status are:

 - BAD_SET (= 1), Illegal set code
 - NO_MORE (= 2), No more tags

 * more is true if there may be more hits. endIndex specifies the
internal index of the next tag to be searched. Note that
startIndex and endIndex is used to point into the server's
internal data base and may not have any external
interpretation.

 ;---
 FUNCTION RemoveFromTagSet
 * Remove tags from a set

 INPUT
 TagSet setCode ; The set code
 [word16_m:256]TagNumber codes ; The codes to be removed

 OUTPUT
 word16_m status ; Request status
 int32_m removed ; Tags removed
 int32_m left ; Tags left

 * Precondition
 setCode must contain valid information. No tags mean delete whole
 set.

 * Postcondition
 + status is zero for everything all right other error codes for

status are:
 - BAD_SET (= 1), Illegal set code
 - NOT_OWNER (= 2), Another application defined the set
 - FIXED_SET (=3), Set is not modifiable
 + removed and left counts the tags actually removed and the ones

left in the set.

 ;---
 FUNCTION AddToTagSet
 * Adds tags to a set or defines new set

 INPUT
 TagSet setCode ; The set code or null for new
 [word16_m:256]TagNumber codes ; The codes to be added

 OUTPUT
 TagSet setCode ; Set definition
 word16_m status ; Request status
 int32_m added ; Tags added

 * Precondition

 * setCode and codes must contain valid information. SetCode null
 means define new set.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 89 –

 * Postcondition

 * status is zero for everything all right other error codes for
status are:

 - BAD_SET (= 1), Illegal set code
 - NOT_OWNER (= 2), Another application defined the set
 - FIXED_SET (=3), Set is not modifiable

 * added counts the tags actually added to the set.

D.17.14 Interface PCCTagAttributeWrite
INTERFACE PCCTagAttributeWrite
 * This interface contains additional functionality for writing
 tag attribute values from a data base.

 * Revision History
 1999-08-31 1.0 ojr, SINTEF: For IEC
 981201 C Changed name
 980813 B Attribute ids valid for all tags
 980810 A First

 VERSION 1.0
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * See PCCTagAttributes

;---
REFERENCES
 General
 TagData
 UserAuth

;---
CONNECTION POINTS

 REFERENCES
 PCCTagDatabase ; All connection points

 ;---
 FUNCTION SetTagAttrValues
 Used to set a number of attribute values, including alarm
 information, using an array of tag codes.

 INPUT
 [word16_m:100]TagAttrValues attrCodes

 OUTPUT
 UaStatus authStatus ; Authentication status
 [word16_m:100]StateCode result

 * Precondition
 Tags are identified with their values. The writing application
 should have authenticated the user and console.

 * Postcondition
 Authentication status returned overall. Individual status
 per attribute code position.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 90 –

Annex E
(Normative)

Navigational interfaces

E.1 IEC 61162-1 relay function

The IEC 61162-1 standard contains requirements for data communication between maritime
electronic instruments, navigation and radio-communication equipment when interconnected
via an appropriate system.

Supporting one-way serial data transmission from a single talker to one or more listeners, the
standard defines 63 different messages or so called sentences for data transfer. The purpose
of this document is to supply appropriate data types, information classes and an interface for
transmission of these sentences via the PISCES protocol. This Companion Standard document
especially references to the chapter 6 (content) of IEC61162-1. It supports the transmission of
all defined sentence types to ensure full compatibility.

The following clauses describe each of the interfaces and their connection points.

E.2 Interface PCCNMEAIn

The NMEAIn interface is used to connect a serial input stream of NMEA messages to the
PISCES protocol. NMEA sentences can be read from one or more port addressed by the port
number (<nn>). The interface provides the serially received sentences in two forms: via a
SUBSCRIBE connection point, client can address all NMEA sentences (or of a particular
sentence formatter) of a given port. By means of a FUNCTION connection point, clients can
obtain particular sentences on demand.

The interface owns the following connection points:

E.2.1 READ NoOfPorts

Used to retrieve the number of available ports. Each port will have a respective subscribe-able
Port_<nn> connection point.

E.2.2 FUNCTION GetPortDescription

Used to retrieve the description of a port. This is an informal text string, usually hard coded in
the server.

E.2.3 FUNCTION NoOfSentences

Used to retrieve a number of supported sentences in GetSentence entry. Sentences and
senders are used to select sentence for buffering.

E.2.4 FUNCTION GetListOfSentences

Used to retrieve the description of NMEA sentences supported by buffered GetSentence reads.
Sentences and senders are returned in an array. Index in returned array starts at zero where
user input startindex.

E.2.5 FUNCTION GetSentence

Used to retrieve a specific NMEA sentence from a specific port. The last received sentence
with given formatter/sender is returned.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 91 –

E.2.6 SUBSCRIBE Port_<nn>

This connection point is provided as an event-driven hook for reading NMEA messages from a
specified port. A number of these connection points will be available. The number and names
are defined by NoOfPorts. The names of the connection points are formed like "Port_01" where
01 identifies the port number. The description of the Port of the event is retrieved by
GetPortDescription.

E.2.7 SUBSCRIBE Port_<nn>_<fmt>

This connection point is similar to the last one (Port_<nn>). However, it only provides
sentences of the given formatter (<fmt>). For example, the following connection point might
exist: "Port_02_VTG".

Note: These connection points are optional. Clients should use Port_<nn> if no appropriate
connection point for the required formatter is available.

E.3 Interface PCCNMEAOut

This interface is used to write NMEA sentences to one or more serial ports. Clients can use a
set of NON-ACKNOWLEDGE-WRITE connection points to write their data to a specified port.

The interface contains the following connection points:

E.3.1 READ NoOfPorts

Used to retrieve the number of available ports. Each port will have a respective subscribe-able
Port_<nn> connection point.

E.3.2 FUNCTION GetPortDescription

Used to retrieve the description of a port. This is an informal text string, usually hard coded in
the server.

E.3.3 NONACKED-WRITE Port_<nn>

This connection point is provided to write NMEA sentences to serial line port. A number of
these connection points will be available. The number and names are defined by NoOfPorts.
The names of the connection points are formed like "Port_01" where 01 identifies the port
number. The description of the Port of the event is retrieved by GetPortDescription.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 92 –

E.4 The NMEA related companion standard documents

E.4.1 The NMEA data type description

DATA TYPES NMEA
* Definition of data types necessary to allow transmission of IEC 1162-1 (NMEA
0183)
 sentences over the PISCES protocol.

 * Sentence structure is defined in following references:

 * NMEA 0183 (1992), NMEA 0183 Standard for interfaceing marine
 electronics devices V 2.00, National Marine Electronics
 Association, Mobile AL, USA.

 * IEC 1162-1 DIS (1995), Maritime navigation and
 radiocommunication equipment and systems - Digital Interfaces -
 Part 1: Single talker and multiple listeners, refernce
 80/105/DIS.

 * Revision history:
 990831 2.1 For IEC (ojr, SINTEF)
 980824 V2 Adapted for PISCES project CS (mt/hg - ISSUS)
 951213 V1 Approved MCS. Typographical changes (ojr - SINTEF)
 951009 V1D Committe draft for votes (ojr - SINTEF)
 950804 VB Remove SentenceDescription, add Sender (Thor Vollset -
 Tordivel A/S)
 950626 VA Change message to sentence, No to Instance (Thor
 Vollset - Tordivel A/S)
 950519 Created (Thor Vollset - Tordivel A/S)

 VERSION 2.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

REFERENCES
 none

;---
INTERPRETATION Sentence OF [82]char8_m
 * Contains a NMEA message. Contents defined by NMEA 0183 standard
 or IEC 1162-1 standard.

;---
INTERPRETATION SentenceFormatter OF [3]char8_m
 * Used to identify NMEA 0183 message.

;---
INTERPRETATION Sender OF [2]char8_m
 * Used to identify the sender of a NMEA 0183 message.

;---
INTERPRETATION PortNo OF word16_m
 * Used to identify multiple ports on a server. Ports are numbered
 from 1 and upwards.

;---
INTERPRETATION Description OF [64]char8_m
 * General description string. May be null terminated.
 This type was defined in the data type definition MiTS.

;---
INTERPRETATION Boolean OF word8_m
 * A true/false type. Zero is false, non-zero true. For testing
 TRUE check that the type is not FALSE.
 This type was defined in the data type definition MiTS.

1 = TRUE
0 = FALSE

;---

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 93 –

INTERPRETATION BlockOk OF Boolean
 * This type says if contents of data block are all right.

* TRUE : contents are all right
 FALSE: contents are unreliable

• This type was defined in the data type definition MiTS.

E.4.2 Description of Interface PCCNMEAIn

INTERFACE PCCNMEAIn
 * This document contains the specification for the PISCES Companion
 Standard for receiving NMEA 0183 (IEC 1162-1) sentences over the
 PISCES protocol.

 * Revision history
 990831 2.1 For IEC (ojr, SINTEF)
 980824 V2 Adapted for PISCES project CS (mt/hg - ISSUS)
 951213 V1 Approved MCS. Typographical changes. (ojr - SINTEF)
 951009 V1D Committee draft for vote. Added sender as index term
 for GetSentence. (ojr - SINTEF).
 950804 VB Remove SentenceDescription add Sender (Thor Vollset
 - Tordivel A/S)
 950626 VA Abstraction on port rather than sentence, Change
 message to sentence, No to Instance (Thor Vollset -
 Tordivel A/S).
 950519 V Created (Thor Vollset - Tordivel A/S)

 VERSION 2.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 The message management is performed by the connection points:
 - NoOfPorts, NoOfSentences and GetListOfSentences.
 Port_<nn> provides event driven connection. GetSentence is
 provided for the client if sporadic values are needed.

 * Port_<nn> re-transmits all sentences received on the specified
 port. NoOfPorts can be called to find the number of ports
 supported. <nn> is always two digits, i.e., from 01 to the
 number of ports supported.

 * NoOfSentences return zero if no sentences are buffered by the
 interface. If it returns non-zero GetListOfSentences can be used
 to get hold of the sentence formatters and senders supported by
 the interface. All supported sentences/senders will be allocated one
 buffer location so that the last received sentence of specified
 formatter/sender always is available. The valid field may indicate
 invalid message if, e.g., no message have been received after
 power up. The list of buffered sentences may be dynamically
 changed by the interface. No supported sentence shall, however, be
 removed.

 * Note that the interface does not check the syntax or semantics of
 the sentence prior to outputting it on the PISCES network.

;---
DATA TYPES

 REFERENCES
 NMEA VERSION 2.1

;---
CONNECTION POINTS

;---
 READ NoOfPorts
 * Used to retrieve the number of available ports. Each port will
 have a respective subscribe-able Port_<nn> connection point.

 OUTPUT
PortNo noOfPorts

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 94 –

 * Precondition
 none

 * Postcondition
 returns the number of serial ports available on this server.

 * Informal Explanation
 none

 ;---
 FUNCTION GetPortDescription
 * Used to retrieve the description of a port. This is an informal
 text string, usually hard coded in the server.

 INPUT
PortNo noOfPort

 OUTPUT
Description description
BlockOk ok

 * Precondition
 1 <= noOfPort <= NoOfPorts

 * Postcondition
 if ok then message is returned
 else precondition is violated

 * Informal Explanation
 description is a free text description used for informal
 explanation of the device connected and sending NMEA 0183
 messages.

 ; ---
 FUNCTION NoOfSentences
 * Used to retrieve a number of supported sentences in GetSentence
 entry. Sentences and senders are used to select sentence for
 buffering.

 INPUT
 PortNo noOfPort

 OUTPUT
 word16_m noOfSentences

 * Precondition
 none

 * Postcondition
 returns the number of NMEA 0183 sentences/senders buffered by
 the interface.

 * Informal Explanation
 returns zero if port is not present or no sentences are
 buffered.

 ; ---
 FUNCTION GetListOfSentences
 * Used to retrieve the description of NMEA 0183 sentences supported
 by buffered GetSentence reads. Sentences and senders are
 returned in an array. Index in returned array starts at zero
 where user input startindex.

 INPUT
 PortNo noOfPort
 word16_m startindex
 word16_m noOfElements

 OUTPUT
 [word16_m:20]Sender sender
 [word16_m:20]SentenceFormatter formatter
 BlockOk ok

 * Precondition

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 95 –

 startindex < NoOfSentences
 startindex + noOfElements < NoOfSentences

 * Postcondition
 if ok then bit-wise indicated descriptions are returned
 else precondition is violated.

 * Informal Explanation
 startindex is numbered from zero.

; ---
 FUNCTION GetSentence
 * Used to retrieve a specific NMEA 0183 sentence from a specific
 port. The last received sentence with given formatter/sender is
 returned.

 INPUT
 PortNo noOfPort
 SentenceFormatter sentence
 Sender sender

 OUTPUT
 Valid valid
 Message message
 GlobalTime time
 BlockOk ok

 * Precondition
 message formatter/sender must have been returned by
 GetListOfSentences. port must be defined.

 * Postcondition
 if ok then message and time is returned. Validity defined by
 valid.
 else precondition is violated.

 * Informal Explanation
 The server shall store the last received message of all
 supported formatter/sender types in separate buffers.

 ; ---
 SUBSCRIBE Port_<nn>
 * This connection point is provided as an event-driven hook for
 reading NMEA 0183 messages from a specified port. A number of
 these connection points will be available. The number and names
 are defined by NoOfPorts. The names of the connection points are
 formed like "Port_01" where 01 identifies the port number. The
 description of the Port of the instance is retrieved by
 GetPortDescription.

 OUTPUT
 Sentence sentence

 * Precondition
 none

 * Postcondition
 When connection is established, the subscription can be started.

 * Informal Explanation
 The data will be transmitted from the server MAU when available.

; ---
 SUBSCRIBE Port_<nn>_<fmt>
* This connection point is similar to the last one (Port_<nn>). However, it
 only provides sentences of the given formatter (<fmt>). Formatters can
 be any of those defined by IEC 1162-1 (table 5, approved sentence
 formatters). For example, the following connection point may
 be part of the interface: "Port_02_VTG".

* Note: These connection points are optional. Clients should use Port_<nn> if
 no appropriate connection point for the required formatter is available.

 OUTPUT

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 96 –

 Sentence sentence

 * Precondition
 none

 * Postcondition
 When connection is established, the subscription can be started.

 * Informal Explanation
 The data will be transmitted from the server MAU when available.

E.4.3 Description of Interface PCCNMEAOut
INTERFACE PCCNMEAOut
 * This document contains the specification for the PISCES Companion
 Standard for sending NMEA 0183 sentences over the PISCES protocol.

 * Revision history
 990831 2.1 For IEC (ojr, SINTEF)
 980824 V2 Adapted for PISCES project CS (mt/hg - ISSUS)
 951213 V1 Approved MCS. Typographical changes. (ojr - SINTEF).
 951009 V1D Committee draft for vote. Also first version (ojr -
 SINTEF).
 951009 Based on interface NMEAIn

 VERSION 2.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 The interface is similar to NMEAIn in that it supports some of the
 same message management entries. The basic difference is that it
 allows a PISCES application to send NMEA 0183 sentences out on a
 serial port.

 * Port_<nn> sends all sentences written to the connection point. It
 writes it on port nn, NoOfPorts can be called to find the number
 of ports supported. <nn> is always two digits, i.e., from 01 to
 the number of ports supported.

 * Note that the interface does not check the syntax or semantics of
 the sentence prior to outputting it on the serial line.

; ---
DATA TYPES

 REFERENCES
 NMEA VERSION 2.1

;---
CONNECTION POINTS

;---
 READ NoOfPorts
 * Used to retrieve the number of available ports. Each port will
 have a respective write-able Port_<nn> connection point.

 OUTPUT
 PortNo noOfPorts

 * Precondition
 none

 * Postcondition
 returns the number of serial ports available on this server.

 * Informal Explanation
 none

 ;---
 FUNCTION GetPortDescription
 * Used to retrieve the description of a port. This is an informal

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 97 –

 text string, usually hard coded in the server.

 INPUT
 PortNo noOfPort

 OUTPUT
 Description description
 BlockOk ok

 * Precondition
 1 <= noOfPort <= NoOfPorts

 * Postcondition
 if ok then message is returned
 else precondition is violated

 * Informal Explanation
 description is a free text description used for informal
 explanation of the device connected and sending NMEA 0183
 messages.

 ;---
 NONACKED-WRITE Port_<nn>
 * This connection point is provided to write NMEA 0183 sentences to
 serial line port. A number of these connection points will be
 available. The number and names are defined by NoOfPorts. The
 names of the connection points are formed like "Port_01" where 01
 identifies the port number. The description of the Port of the
 instance is retrieved by GetPortDescription.

 INPUT
 Sentence sentence

 * Precondition
 none

 * Postcondition
 Sentence written to port in the order that the connection point
 is written to.

 * Informal Explanation
 Note that several clients in principle can connect to the same
 port. This may be inhibited by the use of passwords.

E.4.4 Application Description
APPLICATION PACNMEARelay
 * General MAU with serial line input or output ports that can read
 IEC 1162-1 sentences and make them available to the network or put
 them out to the serial ports.

 * The respective number of ports configured for output or input can
 be read through the interfaces.

 * Revision history
 990831 2.1 For IEC (ojr, SINTEF)
 980825 2.0 Second example, ISSUS

 VERSION 2.1
 DATE 1999-08-31
 RESPONSIBLE IEC TC80/WG6

USAGE
 * See referenced interfaces, This is an applciation acting as a
 relay between NMEA ports

REFERENCES

 PCCNMEAIn
 PCCNMEAOut

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-420  IEC – 98 –

INTERFACES

 ACCEPT NMEAIn
 * This interface is used to read NMEA sentences buffered in the
 system. This application will automatically build a list of the
 sentences it has received and make them available through
 GetListOfSentences.

 INTERFACE COMPONENT PCCNMEAIn

 ACCEPT NMEAOut
 * This interface can output IEC 1162-1 sentences on configured
 serial line ports.

 INTERFACE COMPONENT PCCNMEAIn
